桑椹(Morus notabilis)桑色素(五羟基黄酮)生物合成途径的遗传结构:一种计算机模拟方法

IF 1.5 4区 农林科学 Q3 PLANT SCIENCES Journal of Berry Research Pub Date : 2022-09-12 DOI:10.3233/jbr-220032
Raju Mondal, Sreya Antony, M. C. Thriveni, G. Thanavendan, G. Ravikumar, B. Sreenivasa
{"title":"桑椹(Morus notabilis)桑色素(五羟基黄酮)生物合成途径的遗传结构:一种计算机模拟方法","authors":"Raju Mondal, Sreya Antony, M. C. Thriveni, G. Thanavendan, G. Ravikumar, B. Sreenivasa","doi":"10.3233/jbr-220032","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Morin, (3,5,7,2′,4′-pentahydroxyflavone), is a polyphenolic compound belonging to bio-flavonoids and is predominantly isolated from the family Moraceae. Previously, studies demonstrated the health benefits of morin using human and animal models. Despite its importance as a bioactive compound, the genetic architecture of the morin biosynthetic pathway is still unclear. OBJECTIVE: To understand the genetic architecture of the morin biosynthetic pathway, the following components were analyzed: (1) cis-responsive element (CRE)-mediated regulation, (2) microRNAs (miRNA)-mediated post-transcriptional silencing, and (3) tissue-specific in silico gene expression. METHODS: To understand the genetic architecture of morin biosynthetic pathway, in silico survey was carried out using different web servers (MorusDB, MEME suite, NCBI database, PlantCARE, and psRNATarget) and collected mRNA, protein sequences, and expressed microarray data. TBtools was employed for depicting protein and promoter motifs and the heatmap preparation of tissue-specific expression of genes involved in the morin biosynthesis. RESULTS: The current data mining study highlighted the morin biosynthetic pathway associated genes, namely, phenylalanine ammonia-lyase (MnPAL), chalcone synthase A (MnCSA), chalcone-flavonone isomerase (MnCFI), and flavonoid 3′,5′-hydroxylase (MnFH) are transcriptionally regulated by different growth, development, and stress-responsive CREs. Differential expression profiles how MnPAL (L484_024373) and MnCFI (L484_011241) genes were upregulated across selected tissues. Moreover, miRNA-mediated post-transcriptional silencing was identified. CONCLUSIONS: This study will improve our understanding of morin biosynthesis, thus helping improve production via metabolic engineering.","PeriodicalId":15194,"journal":{"name":"Journal of Berry Research","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic architecture of morin (pentahydroxyflavone) biosynthetic pathway in mulberry (Morus notabilis): an in silico approach\",\"authors\":\"Raju Mondal, Sreya Antony, M. C. Thriveni, G. Thanavendan, G. Ravikumar, B. Sreenivasa\",\"doi\":\"10.3233/jbr-220032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND: Morin, (3,5,7,2′,4′-pentahydroxyflavone), is a polyphenolic compound belonging to bio-flavonoids and is predominantly isolated from the family Moraceae. Previously, studies demonstrated the health benefits of morin using human and animal models. Despite its importance as a bioactive compound, the genetic architecture of the morin biosynthetic pathway is still unclear. OBJECTIVE: To understand the genetic architecture of the morin biosynthetic pathway, the following components were analyzed: (1) cis-responsive element (CRE)-mediated regulation, (2) microRNAs (miRNA)-mediated post-transcriptional silencing, and (3) tissue-specific in silico gene expression. METHODS: To understand the genetic architecture of morin biosynthetic pathway, in silico survey was carried out using different web servers (MorusDB, MEME suite, NCBI database, PlantCARE, and psRNATarget) and collected mRNA, protein sequences, and expressed microarray data. TBtools was employed for depicting protein and promoter motifs and the heatmap preparation of tissue-specific expression of genes involved in the morin biosynthesis. RESULTS: The current data mining study highlighted the morin biosynthetic pathway associated genes, namely, phenylalanine ammonia-lyase (MnPAL), chalcone synthase A (MnCSA), chalcone-flavonone isomerase (MnCFI), and flavonoid 3′,5′-hydroxylase (MnFH) are transcriptionally regulated by different growth, development, and stress-responsive CREs. Differential expression profiles how MnPAL (L484_024373) and MnCFI (L484_011241) genes were upregulated across selected tissues. Moreover, miRNA-mediated post-transcriptional silencing was identified. CONCLUSIONS: This study will improve our understanding of morin biosynthesis, thus helping improve production via metabolic engineering.\",\"PeriodicalId\":15194,\"journal\":{\"name\":\"Journal of Berry Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Berry Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3233/jbr-220032\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Berry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3233/jbr-220032","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:桑色素(3,5,7,2',4'-五羟基黄酮)是一种多酚类化合物,属于生物黄酮类,主要从桑科植物中分离得到。此前,研究使用人类和动物模型证明了桑色素对健康的益处。尽管桑色素作为一种生物活性化合物很重要,但其生物合成途径的遗传结构仍不清楚。目的:为了了解桑色素生物合成途径的遗传结构,分析了以下成分:(1)顺式响应元件(CRE)介导的调控,(2)微小RNA(miRNA)介导转录后沉默,以及(3)组织特异性的计算机基因表达。方法:为了了解桑色素生物合成途径的遗传结构,使用不同的网络服务器(MorusDB、MEME套件、NCBI数据库、PlantCARE和psRNATarget)进行了计算机调查,并收集了mRNA、蛋白质序列和表达微阵列数据。TBtools用于描绘蛋白质和启动子基序,以及参与桑色素生物合成的基因的组织特异性表达的热图制备。结果:目前的数据挖掘研究强调了桑色素生物合成途径相关基因,即苯丙氨酸解氨酶(MnPAL)、查尔酮合酶A(MnCSA)、查尔酮黄酮酮异构酶(MnCFI)和类黄酮3′,5′-羟化酶(MnFH)受到不同生长、发育和应激反应CRE的转录调控。MnPAL(L484_024373)和MnCFI(L484_011241)基因如何在选定组织中上调的差异表达谱。此外,还鉴定了miRNA介导的转录后沉默。结论:这项研究将提高我们对桑色素生物合成的理解,从而有助于通过代谢工程提高产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic architecture of morin (pentahydroxyflavone) biosynthetic pathway in mulberry (Morus notabilis): an in silico approach
BACKGROUND: Morin, (3,5,7,2′,4′-pentahydroxyflavone), is a polyphenolic compound belonging to bio-flavonoids and is predominantly isolated from the family Moraceae. Previously, studies demonstrated the health benefits of morin using human and animal models. Despite its importance as a bioactive compound, the genetic architecture of the morin biosynthetic pathway is still unclear. OBJECTIVE: To understand the genetic architecture of the morin biosynthetic pathway, the following components were analyzed: (1) cis-responsive element (CRE)-mediated regulation, (2) microRNAs (miRNA)-mediated post-transcriptional silencing, and (3) tissue-specific in silico gene expression. METHODS: To understand the genetic architecture of morin biosynthetic pathway, in silico survey was carried out using different web servers (MorusDB, MEME suite, NCBI database, PlantCARE, and psRNATarget) and collected mRNA, protein sequences, and expressed microarray data. TBtools was employed for depicting protein and promoter motifs and the heatmap preparation of tissue-specific expression of genes involved in the morin biosynthesis. RESULTS: The current data mining study highlighted the morin biosynthetic pathway associated genes, namely, phenylalanine ammonia-lyase (MnPAL), chalcone synthase A (MnCSA), chalcone-flavonone isomerase (MnCFI), and flavonoid 3′,5′-hydroxylase (MnFH) are transcriptionally regulated by different growth, development, and stress-responsive CREs. Differential expression profiles how MnPAL (L484_024373) and MnCFI (L484_011241) genes were upregulated across selected tissues. Moreover, miRNA-mediated post-transcriptional silencing was identified. CONCLUSIONS: This study will improve our understanding of morin biosynthesis, thus helping improve production via metabolic engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Berry Research
Journal of Berry Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
3.50
自引率
11.80%
发文量
21
期刊介绍: The main objective of the Journal of Berry Research is to improve the knowledge about quality and production of berries to benefit health of the consumers and maintain profitable production using sustainable systems. The objective will be achieved by focusing on four main areas of research and development: From genetics to variety evaluation Nursery production systems and plant quality control Plant physiology, biochemistry and molecular biology, as well as cultural management Health for the consumer: components and factors affecting berries'' nutritional value Specifically, the journal will cover berries (strawberry, raspberry, blackberry, blueberry, cranberry currants, etc.), as well as grapes and small soft fruit in general (e.g., kiwi fruit). It will publish research results covering all areas of plant breeding, including plant genetics, genomics, functional genomics, proteomics and metabolomics, plant physiology, plant pathology and plant development, as well as results dealing with the chemistry and biochemistry of bioactive compounds contained in such fruits and their possible role in human health. Contributions detailing possible pharmacological, medical or therapeutic use or dietary significance will be welcomed in addition to studies regarding biosafety issues of genetically modified plants.
期刊最新文献
Metabolomic screening and urolithins metabotypes identification in the urinary metabolome of Costa Rican volunteers after blackberry ( Rubus adenotrichos)-based drink consumption The efficacy of adding some antioxidant compounds in alleviating strawberry fruit rots during storage New insights into the identification of biochemical traits linked to rooting percentage in fig ( Ficus carica L.) cuttings Strawberries in a warming world: examining the ecological niche of Fragaria×ananassa Duch. Across different climate scenarios Using vertical farming systems for propagating everbearing strawberry: Physiological and technological feasibility assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1