G. Fernandes, Amanda S. Furtado, J. J. C. Pituba, E. A. S. Neto
{"title":"考虑相脱粘的金属基复合材料结构多尺度分析","authors":"G. Fernandes, Amanda S. Furtado, J. J. C. Pituba, E. A. S. Neto","doi":"10.1142/S1756973717400042","DOIUrl":null,"url":null,"abstract":"Multiscale analyses considering the stretching problem in plates composed of metal matrix composites (MMC) have been performed using a coupled BEM/FEM model, where the boundary element method (BEM) and the finite element method (FEM) models, respectively, the macrocontinuum and the material microstructure, denoted as representative volume element (RVE). The RVE matrix zone behavior is governed by the von Mises elasto-plastic model while elastic inclusions have been incorporated to the matrix to improve the material mechanical properties. To simulate the microcracks evolution at the interface zone surrounding the inclusions, a modified cohesive fracture model has been adopted, where the interface zone is modeled by means of cohesive contact finite elements to capture the effects of phase debonding. Thus, this paper investigates how this phase debonding affects the microstructure mechanical behavior and consequently affects the macrostructure response in a multiscale analysis. For that, initially, only RVEs...","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973717400042","citationCount":"2","resultStr":"{\"title\":\"Multiscale Analysis of Structures Composed of Metal Matrix Composites Considering Phase Debonding\",\"authors\":\"G. Fernandes, Amanda S. Furtado, J. J. C. Pituba, E. A. S. Neto\",\"doi\":\"10.1142/S1756973717400042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiscale analyses considering the stretching problem in plates composed of metal matrix composites (MMC) have been performed using a coupled BEM/FEM model, where the boundary element method (BEM) and the finite element method (FEM) models, respectively, the macrocontinuum and the material microstructure, denoted as representative volume element (RVE). The RVE matrix zone behavior is governed by the von Mises elasto-plastic model while elastic inclusions have been incorporated to the matrix to improve the material mechanical properties. To simulate the microcracks evolution at the interface zone surrounding the inclusions, a modified cohesive fracture model has been adopted, where the interface zone is modeled by means of cohesive contact finite elements to capture the effects of phase debonding. Thus, this paper investigates how this phase debonding affects the microstructure mechanical behavior and consequently affects the macrostructure response in a multiscale analysis. For that, initially, only RVEs...\",\"PeriodicalId\":43242,\"journal\":{\"name\":\"Journal of Multiscale Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1756973717400042\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multiscale Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1756973717400042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1756973717400042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multiscale Analysis of Structures Composed of Metal Matrix Composites Considering Phase Debonding
Multiscale analyses considering the stretching problem in plates composed of metal matrix composites (MMC) have been performed using a coupled BEM/FEM model, where the boundary element method (BEM) and the finite element method (FEM) models, respectively, the macrocontinuum and the material microstructure, denoted as representative volume element (RVE). The RVE matrix zone behavior is governed by the von Mises elasto-plastic model while elastic inclusions have been incorporated to the matrix to improve the material mechanical properties. To simulate the microcracks evolution at the interface zone surrounding the inclusions, a modified cohesive fracture model has been adopted, where the interface zone is modeled by means of cohesive contact finite elements to capture the effects of phase debonding. Thus, this paper investigates how this phase debonding affects the microstructure mechanical behavior and consequently affects the macrostructure response in a multiscale analysis. For that, initially, only RVEs...