{"title":"乘积系统产生的Schrödinger算子的谱特性","authors":"D. Damanik, J. Fillman, P. Gohlke","doi":"10.4171/jst/445","DOIUrl":null,"url":null,"abstract":"We study ergodic Schr\\\"odinger operators defined over product dynamical systems in which one factor is periodic and the other factor is either a subshift over a finite alphabet or an irrational rotation of the circle. In the case in which one factor is a Boshernitzan subshift, we prove that either the resulting operators are periodic or the resulting spectra must be Cantor sets. The main ingredient is a suitable stability result for Boshernitzan's criterion under taking products. We also discuss the stability of purely singular continuous spectrum, which, given the zero-measure spectrum result, amounts to stability results for eigenvalue exclusion. In particular, we examine situations in which the existing criteria for the exclusion of eigenvalues are stable under periodic perturbations. As a highlight of this, we show that any simple Toeplitz subshift over a binary alphabet exhibits uniform absence of eigenvalues on the hull for any periodic perturbation whose period is commensurate with the coding sequence. In the case of a full shift, we give an effective criterion to compute exactly the spectrum of a random Anderson model perturbed by a potential of period two, and we further show that the naive generalization of this criterion does not hold for period three. Next, we consider quasi-periodic potentials with potentials generated by trigonometric polynomials with periodic background. We show that the quasiperiodic cocycle induced by passing to blocks of period length is subcritical when the coupling constant is small and supercritical when the coupling constant is large. Thus, the spectral type is absolutely continuous for small coupling and pure point (for a.e.\\ frequency and phase) when the coupling is large.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Spectral characteristics of Schrödinger operators generated by product systems\",\"authors\":\"D. Damanik, J. Fillman, P. Gohlke\",\"doi\":\"10.4171/jst/445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study ergodic Schr\\\\\\\"odinger operators defined over product dynamical systems in which one factor is periodic and the other factor is either a subshift over a finite alphabet or an irrational rotation of the circle. In the case in which one factor is a Boshernitzan subshift, we prove that either the resulting operators are periodic or the resulting spectra must be Cantor sets. The main ingredient is a suitable stability result for Boshernitzan's criterion under taking products. We also discuss the stability of purely singular continuous spectrum, which, given the zero-measure spectrum result, amounts to stability results for eigenvalue exclusion. In particular, we examine situations in which the existing criteria for the exclusion of eigenvalues are stable under periodic perturbations. As a highlight of this, we show that any simple Toeplitz subshift over a binary alphabet exhibits uniform absence of eigenvalues on the hull for any periodic perturbation whose period is commensurate with the coding sequence. In the case of a full shift, we give an effective criterion to compute exactly the spectrum of a random Anderson model perturbed by a potential of period two, and we further show that the naive generalization of this criterion does not hold for period three. Next, we consider quasi-periodic potentials with potentials generated by trigonometric polynomials with periodic background. We show that the quasiperiodic cocycle induced by passing to blocks of period length is subcritical when the coupling constant is small and supercritical when the coupling constant is large. Thus, the spectral type is absolutely continuous for small coupling and pure point (for a.e.\\\\ frequency and phase) when the coupling is large.\",\"PeriodicalId\":48789,\"journal\":{\"name\":\"Journal of Spectral Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jst/445\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jst/445","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spectral characteristics of Schrödinger operators generated by product systems
We study ergodic Schr\"odinger operators defined over product dynamical systems in which one factor is periodic and the other factor is either a subshift over a finite alphabet or an irrational rotation of the circle. In the case in which one factor is a Boshernitzan subshift, we prove that either the resulting operators are periodic or the resulting spectra must be Cantor sets. The main ingredient is a suitable stability result for Boshernitzan's criterion under taking products. We also discuss the stability of purely singular continuous spectrum, which, given the zero-measure spectrum result, amounts to stability results for eigenvalue exclusion. In particular, we examine situations in which the existing criteria for the exclusion of eigenvalues are stable under periodic perturbations. As a highlight of this, we show that any simple Toeplitz subshift over a binary alphabet exhibits uniform absence of eigenvalues on the hull for any periodic perturbation whose period is commensurate with the coding sequence. In the case of a full shift, we give an effective criterion to compute exactly the spectrum of a random Anderson model perturbed by a potential of period two, and we further show that the naive generalization of this criterion does not hold for period three. Next, we consider quasi-periodic potentials with potentials generated by trigonometric polynomials with periodic background. We show that the quasiperiodic cocycle induced by passing to blocks of period length is subcritical when the coupling constant is small and supercritical when the coupling constant is large. Thus, the spectral type is absolutely continuous for small coupling and pure point (for a.e.\ frequency and phase) when the coupling is large.
期刊介绍:
The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome.
The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory.
Schrödinger operators, scattering theory and resonances;
eigenvalues: perturbation theory, asymptotics and inequalities;
quantum graphs, graph Laplacians;
pseudo-differential operators and semi-classical analysis;
random matrix theory;
the Anderson model and other random media;
non-self-adjoint matrices and operators, including Toeplitz operators;
spectral geometry, including manifolds and automorphic forms;
linear and nonlinear differential operators, especially those arising in geometry and physics;
orthogonal polynomials;
inverse problems.