多目标多武装土匪:重复博弈算法及其在路径选择中的应用

Candy A. Huanca-Anquise, A. Bazzan, Anderson R. Tavares
{"title":"多目标多武装土匪:重复博弈算法及其在路径选择中的应用","authors":"Candy A. Huanca-Anquise, A. Bazzan, Anderson R. Tavares","doi":"10.22456/2175-2745.122929","DOIUrl":null,"url":null,"abstract":"Multi-objective decision-making in multi-agent scenarios poses multiple challenges. Dealing with multiple objectives and non-stationarity caused by simultaneous learning are only two of them, which have been addressed separately. In this work, reinforcement learning algorithms that tackle both issues together are proposed and applied to a route choice problem, where drivers must select an action in a single-state formulation, while aiming to minimize both their travel time and toll. Hence, we deal with repeated games, now with a multi-objective approach. Advantages, limitations and differences of these algorithms are discussed. Our results show that the proposed algorithms for action selection using reinforcement learning deal with non-stationarity and multiple objectives, while providing alternative solutions to those of centralized methods.","PeriodicalId":53421,"journal":{"name":"Revista de Informatica Teorica e Aplicada","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Objective, Multi-Armed Bandits: Algorithms for Repeated Games and Application to Route Choice\",\"authors\":\"Candy A. Huanca-Anquise, A. Bazzan, Anderson R. Tavares\",\"doi\":\"10.22456/2175-2745.122929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-objective decision-making in multi-agent scenarios poses multiple challenges. Dealing with multiple objectives and non-stationarity caused by simultaneous learning are only two of them, which have been addressed separately. In this work, reinforcement learning algorithms that tackle both issues together are proposed and applied to a route choice problem, where drivers must select an action in a single-state formulation, while aiming to minimize both their travel time and toll. Hence, we deal with repeated games, now with a multi-objective approach. Advantages, limitations and differences of these algorithms are discussed. Our results show that the proposed algorithms for action selection using reinforcement learning deal with non-stationarity and multiple objectives, while providing alternative solutions to those of centralized methods.\",\"PeriodicalId\":53421,\"journal\":{\"name\":\"Revista de Informatica Teorica e Aplicada\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Informatica Teorica e Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22456/2175-2745.122929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Informatica Teorica e Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.122929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

多智能体场景中的多目标决策带来了多重挑战。处理多个目标和同时学习造成的非平稳性只是其中的两个问题,它们已经被单独解决。在这项工作中,提出了同时解决这两个问题的强化学习算法,并将其应用于路线选择问题,在该问题中,驾驶员必须在单个状态公式中选择一个动作,同时旨在最大限度地减少他们的旅行时间和通行费。因此,我们处理重复博弈,现在采用多目标方法。讨论了这些算法的优点、局限性和差异。我们的结果表明,所提出的使用强化学习的行动选择算法处理了非平稳性和多个目标,同时提供了集中式方法的替代解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Objective, Multi-Armed Bandits: Algorithms for Repeated Games and Application to Route Choice
Multi-objective decision-making in multi-agent scenarios poses multiple challenges. Dealing with multiple objectives and non-stationarity caused by simultaneous learning are only two of them, which have been addressed separately. In this work, reinforcement learning algorithms that tackle both issues together are proposed and applied to a route choice problem, where drivers must select an action in a single-state formulation, while aiming to minimize both their travel time and toll. Hence, we deal with repeated games, now with a multi-objective approach. Advantages, limitations and differences of these algorithms are discussed. Our results show that the proposed algorithms for action selection using reinforcement learning deal with non-stationarity and multiple objectives, while providing alternative solutions to those of centralized methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista de Informatica Teorica e Aplicada
Revista de Informatica Teorica e Aplicada Computer Science-Computer Science (all)
CiteScore
0.90
自引率
0.00%
发文量
14
期刊最新文献
Evaluación del Rendimiento de una red IPv6 utilizando IPSec en Modo Túnel Aplicación multiplataforma de modelo computacional predictivo Implementación de una solución de Inteligencia de Negocios aplicada al Suministro de Fuerza de Trabajo Análisis de los derechos a la intimidad y privacidad sobre los datos personales en la legislación Ecuatoriana Vulnerabilidades de las cookies en aplicaciones web: Redes Sociales y Streaming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1