机器能理解公共行政文献吗?应用文本挖掘进行系统综述

IF 0.7 Q4 PUBLIC ADMINISTRATION Chinese Public Administration Review Pub Date : 2022-06-28 DOI:10.1177/15396754221109319
Hanjin Mao, Huafang Li
{"title":"机器能理解公共行政文献吗?应用文本挖掘进行系统综述","authors":"Hanjin Mao, Huafang Li","doi":"10.1177/15396754221109319","DOIUrl":null,"url":null,"abstract":"Systematic reviews summarize the progress of studies and pave roads for future research in an academic field. However, conducting a systematic literature review can be burdensome and time-consuming. Computer-assisted methods such as text mining techniques have been increasingly applied to improve systematic reviews in public administration. To test the reliability of using text mining for systematic literature reviews, this study uses clustering, topic modeling, automatic multi-term extraction, and text network to systematically review articles published in Chinese Public Administration Review from 2002 to 2019. By comparing machine-produced topics with existing human-coded themes, findings show that applying text mining methods for systematic reviews can be reliable and effective with cautions. The study also offers practical suggestions for researchers to apply text mining methods for systematic literature reviews.","PeriodicalId":41625,"journal":{"name":"Chinese Public Administration Review","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can machine understand public administration literature? Applying text mining for systematic review\",\"authors\":\"Hanjin Mao, Huafang Li\",\"doi\":\"10.1177/15396754221109319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systematic reviews summarize the progress of studies and pave roads for future research in an academic field. However, conducting a systematic literature review can be burdensome and time-consuming. Computer-assisted methods such as text mining techniques have been increasingly applied to improve systematic reviews in public administration. To test the reliability of using text mining for systematic literature reviews, this study uses clustering, topic modeling, automatic multi-term extraction, and text network to systematically review articles published in Chinese Public Administration Review from 2002 to 2019. By comparing machine-produced topics with existing human-coded themes, findings show that applying text mining methods for systematic reviews can be reliable and effective with cautions. The study also offers practical suggestions for researchers to apply text mining methods for systematic literature reviews.\",\"PeriodicalId\":41625,\"journal\":{\"name\":\"Chinese Public Administration Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Public Administration Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15396754221109319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PUBLIC ADMINISTRATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Public Administration Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15396754221109319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC ADMINISTRATION","Score":null,"Total":0}
引用次数: 0

摘要

系统综述总结了研究进展,为未来学术领域的研究铺平了道路。然而,进行系统的文献综述可能是繁重和耗时的。文本挖掘技术等计算机辅助方法已越来越多地应用于改善公共管理中的系统审查。为了检验使用文本挖掘进行系统文献综述的可靠性,本研究使用聚类、主题建模、自动多术语提取和文本网络对2002年至2019年发表在《中国公共管理评论》上的文章进行了系统综述。通过将机器生成的主题与现有的人工编码主题进行比较,研究结果表明,将文本挖掘方法应用于系统评论是可靠和有效的,但需要注意。该研究还为研究人员应用文本挖掘方法进行系统的文献综述提供了实用建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can machine understand public administration literature? Applying text mining for systematic review
Systematic reviews summarize the progress of studies and pave roads for future research in an academic field. However, conducting a systematic literature review can be burdensome and time-consuming. Computer-assisted methods such as text mining techniques have been increasingly applied to improve systematic reviews in public administration. To test the reliability of using text mining for systematic literature reviews, this study uses clustering, topic modeling, automatic multi-term extraction, and text network to systematically review articles published in Chinese Public Administration Review from 2002 to 2019. By comparing machine-produced topics with existing human-coded themes, findings show that applying text mining methods for systematic reviews can be reliable and effective with cautions. The study also offers practical suggestions for researchers to apply text mining methods for systematic literature reviews.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Public Administration Review
Chinese Public Administration Review PUBLIC ADMINISTRATION-
CiteScore
0.80
自引率
0.00%
发文量
23
期刊最新文献
The impact of perceived walking environment on social support for older adults Governance capacity, social justice, social security, and institutionalized political participation in China: A moderated mediation model The regional integration transition of China’s immigration policy: The case of Yiwu Targeting performance of Dibao program in China: An empirical study based on the 2020 China Family Panel Studies Book Review: Ying Xiong, Zhexue yu gonggong xingzheng [Philosophy and public administration: An introduction]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1