{"title":"玉米和花生油品质分析中理化性质的计算研究","authors":"S. Rubalya Valantina, K. Arockia Jayalatha","doi":"10.3989/gya.0663201","DOIUrl":null,"url":null,"abstract":"Oils are commonly used in cooking as a frying medium which has been constantly subjected to different levels of heating. In this work, we have considered the most commonly used oils namely peanut oil and corn oil. Quality analyses of corn and peanut oils were made by relating macroscopic properties (ultrasonic velocity, viscosity, and density) to microscopic parameters (intermolecular free length, adiabatic compressibility etc.,) by subjecting them to six cycles of heating (190 ˚C). Variation in the mentioned property indexes, the degree of degradation and reusability for the next heating cycle that could be used in the food industry and processing were monitored. Using Newton-Laplace and Wood’s equation, the adiabatic compressibility, acoustic impedance, and intermolecular free length of the oil were estimated from the experimental data. Ultrasonic velocity was observed linearly as related to viscosity with the dependency factor (R2 = 0.932). With the aid of experiential data, the physical thermodynamic parameters, particularly particle size, packing factor, chemical potential, and L-J potential were computed. A high correlation factor was observed by fitting ultrasonic velocity, viscosity, and density to Parthasarathy and Bakshi, and Rodenbush equations. In the study, ultrasonic velocity, a macroscopic parameter, could be decoded to determine the microscopic variations in oil subjected to different temperatures in an industrial application.","PeriodicalId":12839,"journal":{"name":"Grasas y Aceites","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computational studies on physico-chemical properties in the quality analysis of corn and peanut oil\",\"authors\":\"S. Rubalya Valantina, K. Arockia Jayalatha\",\"doi\":\"10.3989/gya.0663201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oils are commonly used in cooking as a frying medium which has been constantly subjected to different levels of heating. In this work, we have considered the most commonly used oils namely peanut oil and corn oil. Quality analyses of corn and peanut oils were made by relating macroscopic properties (ultrasonic velocity, viscosity, and density) to microscopic parameters (intermolecular free length, adiabatic compressibility etc.,) by subjecting them to six cycles of heating (190 ˚C). Variation in the mentioned property indexes, the degree of degradation and reusability for the next heating cycle that could be used in the food industry and processing were monitored. Using Newton-Laplace and Wood’s equation, the adiabatic compressibility, acoustic impedance, and intermolecular free length of the oil were estimated from the experimental data. Ultrasonic velocity was observed linearly as related to viscosity with the dependency factor (R2 = 0.932). With the aid of experiential data, the physical thermodynamic parameters, particularly particle size, packing factor, chemical potential, and L-J potential were computed. A high correlation factor was observed by fitting ultrasonic velocity, viscosity, and density to Parthasarathy and Bakshi, and Rodenbush equations. In the study, ultrasonic velocity, a macroscopic parameter, could be decoded to determine the microscopic variations in oil subjected to different temperatures in an industrial application.\",\"PeriodicalId\":12839,\"journal\":{\"name\":\"Grasas y Aceites\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grasas y Aceites\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3989/gya.0663201\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grasas y Aceites","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3989/gya.0663201","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Computational studies on physico-chemical properties in the quality analysis of corn and peanut oil
Oils are commonly used in cooking as a frying medium which has been constantly subjected to different levels of heating. In this work, we have considered the most commonly used oils namely peanut oil and corn oil. Quality analyses of corn and peanut oils were made by relating macroscopic properties (ultrasonic velocity, viscosity, and density) to microscopic parameters (intermolecular free length, adiabatic compressibility etc.,) by subjecting them to six cycles of heating (190 ˚C). Variation in the mentioned property indexes, the degree of degradation and reusability for the next heating cycle that could be used in the food industry and processing were monitored. Using Newton-Laplace and Wood’s equation, the adiabatic compressibility, acoustic impedance, and intermolecular free length of the oil were estimated from the experimental data. Ultrasonic velocity was observed linearly as related to viscosity with the dependency factor (R2 = 0.932). With the aid of experiential data, the physical thermodynamic parameters, particularly particle size, packing factor, chemical potential, and L-J potential were computed. A high correlation factor was observed by fitting ultrasonic velocity, viscosity, and density to Parthasarathy and Bakshi, and Rodenbush equations. In the study, ultrasonic velocity, a macroscopic parameter, could be decoded to determine the microscopic variations in oil subjected to different temperatures in an industrial application.
期刊介绍:
Grasas y Aceites is a peer-reviewed journal devoted to the publication of original articles concerning the broad field of lipids, especially edible fats and oils from different origins, including non acyl lipids from microbial origin relevant to the food industry. It publishes full research articles, research notes, reviews as well as information on references, patents, and books.
Grasas y Aceites publishes original articles on basic or practical research, as well as review articles on lipid related topics in food science and technology, biology, (bio)chemistry, medical science, nutrition, (bio)technology, processing and engineering. Topics at the interface of basic research and applications are encouraged. Manuscripts related to by-products from the oil industry and the handling and treatment of the wastewaters are also welcomed.
Topics of special interest to Grasas y Aceites are:
-Lipid analysis, including sensory analysis
-Oleochemistry, including lipase modified lipids
-Biochemistry and molecular biology of lipids, including genetically modified oil crops and micro-organisms
-Lipids in health and disease, including functional foods and clinical studies
-Technical aspects of oil extraction and refining
-Processing and storage of oleaginous fruit, especially olive pickling
-Agricultural practices in oil crops, when affecting oil yield or quality