{"title":"三种长度尺度的胶体凝胶:团簇与互穿团簇方法","authors":"Louis-Vincent Bouthier, T. Gibaud","doi":"10.1122/8.0000595","DOIUrl":null,"url":null,"abstract":"Typically, in quiescent conditions, attractive colloids at low volume fractions form fractal gels structured into two length scales: the colloidal and the fractal cluster scales. However, when flow interferes with gelation colloidal fractal gels, it may display three distinct length scales [Dagès et al., Soft Matter 18, 6645–6659 (2022)]. Following those recent experimental investigations, we derive two models that account for the structure and the rheological properties of such atypical colloidal gels. The gel elasticity is inferred from scaling arguments, and the structure is translated into scattering intensities following the global scattering functions approach proposed by Beaucage and, typically, measured in small-angle x-ray scattering (SAXS). In both models, we consider that the colloids condensate into fractal clusters. In the clusters of the clusters model, the clusters form superagregates that then build the gel network. In the interpenetrating clusters model, the clusters interpenetrate one another to form the gel network. Those two models are then used to analyze rheo-SAXS experiments carried out on carbon black gels formed through flow cessation.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Three length-scales colloidal gels: The clusters of clusters versus the interpenetrating clusters approach\",\"authors\":\"Louis-Vincent Bouthier, T. Gibaud\",\"doi\":\"10.1122/8.0000595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typically, in quiescent conditions, attractive colloids at low volume fractions form fractal gels structured into two length scales: the colloidal and the fractal cluster scales. However, when flow interferes with gelation colloidal fractal gels, it may display three distinct length scales [Dagès et al., Soft Matter 18, 6645–6659 (2022)]. Following those recent experimental investigations, we derive two models that account for the structure and the rheological properties of such atypical colloidal gels. The gel elasticity is inferred from scaling arguments, and the structure is translated into scattering intensities following the global scattering functions approach proposed by Beaucage and, typically, measured in small-angle x-ray scattering (SAXS). In both models, we consider that the colloids condensate into fractal clusters. In the clusters of the clusters model, the clusters form superagregates that then build the gel network. In the interpenetrating clusters model, the clusters interpenetrate one another to form the gel network. Those two models are then used to analyze rheo-SAXS experiments carried out on carbon black gels formed through flow cessation.\",\"PeriodicalId\":16991,\"journal\":{\"name\":\"Journal of Rheology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1122/8.0000595\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000595","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Three length-scales colloidal gels: The clusters of clusters versus the interpenetrating clusters approach
Typically, in quiescent conditions, attractive colloids at low volume fractions form fractal gels structured into two length scales: the colloidal and the fractal cluster scales. However, when flow interferes with gelation colloidal fractal gels, it may display three distinct length scales [Dagès et al., Soft Matter 18, 6645–6659 (2022)]. Following those recent experimental investigations, we derive two models that account for the structure and the rheological properties of such atypical colloidal gels. The gel elasticity is inferred from scaling arguments, and the structure is translated into scattering intensities following the global scattering functions approach proposed by Beaucage and, typically, measured in small-angle x-ray scattering (SAXS). In both models, we consider that the colloids condensate into fractal clusters. In the clusters of the clusters model, the clusters form superagregates that then build the gel network. In the interpenetrating clusters model, the clusters interpenetrate one another to form the gel network. Those two models are then used to analyze rheo-SAXS experiments carried out on carbon black gels formed through flow cessation.
期刊介绍:
The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.