应用机器学习方法利用土壤样本地球化学预测地质

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2022-12-01 DOI:10.1016/j.acags.2022.100094
Timothy C.C. Lui , Daniel D. Gregory , Marek Anderson , Well-Shen Lee , Sharon A. Cowling
{"title":"应用机器学习方法利用土壤样本地球化学预测地质","authors":"Timothy C.C. Lui ,&nbsp;Daniel D. Gregory ,&nbsp;Marek Anderson ,&nbsp;Well-Shen Lee ,&nbsp;Sharon A. Cowling","doi":"10.1016/j.acags.2022.100094","DOIUrl":null,"url":null,"abstract":"<div><p>In this study we compared various machine learning techniques that used soil geochemistry to aid in geologic mapping. We tested six different sampling methods (undersample, oversample, Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), SMOTE and Edited Nearest Neighbor (SMOTEENN), and SMOTE and Tomek links (SMOTETomek)). SMOTE performed best with ADASYN and SMOTETomek having slightly lower effectiveness. Nine machine learning algorithms (naïve Bayes, logistic regression, quadratic discriminant analysis, nearest neighbors, radial basis function support-vector machine, artificial neural network, random forest, AdaBoost classifier, and gradient boosting classifier) were compared and AdaBoost classifiers and gradient boosting classifiers were found to be most effective. Finally, we experimented with multiple classifier systems (MCS) testing different combinations of algorithms and various combinatorial functions. It was found that MCS can outperform individual models, and the best <span>MCS</span> combined nearest neighbors, radial basis function support-vector machine, artificial neural network, random forest, AdaBoost classifiers, and gradient boosting classifier, then applied a logistic regression to the probabilities output by the models. Ultimately, we created a tool that is able to adequately predict underlying geology in the study area using soil geochemistry.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"16 ","pages":"Article 100094"},"PeriodicalIF":2.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197422000167/pdfft?md5=b4237ad5984255315f0bafb7d1c87083&pid=1-s2.0-S2590197422000167-main.pdf","citationCount":"4","resultStr":"{\"title\":\"Applying machine learning methods to predict geology using soil sample geochemistry\",\"authors\":\"Timothy C.C. Lui ,&nbsp;Daniel D. Gregory ,&nbsp;Marek Anderson ,&nbsp;Well-Shen Lee ,&nbsp;Sharon A. Cowling\",\"doi\":\"10.1016/j.acags.2022.100094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study we compared various machine learning techniques that used soil geochemistry to aid in geologic mapping. We tested six different sampling methods (undersample, oversample, Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), SMOTE and Edited Nearest Neighbor (SMOTEENN), and SMOTE and Tomek links (SMOTETomek)). SMOTE performed best with ADASYN and SMOTETomek having slightly lower effectiveness. Nine machine learning algorithms (naïve Bayes, logistic regression, quadratic discriminant analysis, nearest neighbors, radial basis function support-vector machine, artificial neural network, random forest, AdaBoost classifier, and gradient boosting classifier) were compared and AdaBoost classifiers and gradient boosting classifiers were found to be most effective. Finally, we experimented with multiple classifier systems (MCS) testing different combinations of algorithms and various combinatorial functions. It was found that MCS can outperform individual models, and the best <span>MCS</span> combined nearest neighbors, radial basis function support-vector machine, artificial neural network, random forest, AdaBoost classifiers, and gradient boosting classifier, then applied a logistic regression to the probabilities output by the models. Ultimately, we created a tool that is able to adequately predict underlying geology in the study area using soil geochemistry.</p></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"16 \",\"pages\":\"Article 100094\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590197422000167/pdfft?md5=b4237ad5984255315f0bafb7d1c87083&pid=1-s2.0-S2590197422000167-main.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197422000167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197422000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4

摘要

在这项研究中,我们比较了各种机器学习技术,这些技术使用土壤地球化学来帮助进行地质制图。我们测试了六种不同的采样方法(欠采样,过采样,合成少数过采样技术(SMOTE),自适应合成采样(ADASYN), SMOTE和编辑最近邻(SMOTEENN),以及SMOTE和Tomek链接(SMOTETomek))。SMOTE表现最好,ADASYN和SMOTETomek的效果稍低。比较了9种机器学习算法(naïve贝叶斯、逻辑回归、二次判别分析、最近邻、径向基函数支持向量机、人工神经网络、随机森林、AdaBoost分类器和梯度增强分类器),发现AdaBoost分类器和梯度增强分类器最有效。最后,我们用多个分类器系统(MCS)进行了实验,测试了不同的算法组合和各种组合函数。结果表明,最优MCS将最近邻、径向基函数支持向量机、人工神经网络、随机森林、AdaBoost分类器和梯度增强分类器组合在一起,对模型输出的概率进行逻辑回归。最终,我们创造了一种工具,能够利用土壤地球化学充分预测研究区域的潜在地质情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying machine learning methods to predict geology using soil sample geochemistry

In this study we compared various machine learning techniques that used soil geochemistry to aid in geologic mapping. We tested six different sampling methods (undersample, oversample, Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), SMOTE and Edited Nearest Neighbor (SMOTEENN), and SMOTE and Tomek links (SMOTETomek)). SMOTE performed best with ADASYN and SMOTETomek having slightly lower effectiveness. Nine machine learning algorithms (naïve Bayes, logistic regression, quadratic discriminant analysis, nearest neighbors, radial basis function support-vector machine, artificial neural network, random forest, AdaBoost classifier, and gradient boosting classifier) were compared and AdaBoost classifiers and gradient boosting classifiers were found to be most effective. Finally, we experimented with multiple classifier systems (MCS) testing different combinations of algorithms and various combinatorial functions. It was found that MCS can outperform individual models, and the best MCS combined nearest neighbors, radial basis function support-vector machine, artificial neural network, random forest, AdaBoost classifiers, and gradient boosting classifier, then applied a logistic regression to the probabilities output by the models. Ultimately, we created a tool that is able to adequately predict underlying geology in the study area using soil geochemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1