{"title":"关于一类由分数积分算子生成的解析函数","authors":"R. Ibrahim","doi":"10.1515/conop-2017-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this note, we improve the idea of the Tsallis entropy in a complex domain. This improvement is contingent on the fractional operator in a complex domain (type Alexander). We clarify some new classes of analytic functions, which are planned in view of the geometry function theory. This category of entropy is called fractional entropy; accordingly, we demand them fractional entropic geometry classes. Other geometric properties are established in the sequel. Our exhibition is supported by the Maxwell Lemma and Jack Lemma.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"4 1","pages":"1 - 6"},"PeriodicalIF":0.3000,"publicationDate":"2017-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2017-0001","citationCount":"4","resultStr":"{\"title\":\"On a class of analytic functions generated by fractional integral operator\",\"authors\":\"R. Ibrahim\",\"doi\":\"10.1515/conop-2017-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note, we improve the idea of the Tsallis entropy in a complex domain. This improvement is contingent on the fractional operator in a complex domain (type Alexander). We clarify some new classes of analytic functions, which are planned in view of the geometry function theory. This category of entropy is called fractional entropy; accordingly, we demand them fractional entropic geometry classes. Other geometric properties are established in the sequel. Our exhibition is supported by the Maxwell Lemma and Jack Lemma.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"4 1\",\"pages\":\"1 - 6\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2017-0001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2017-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2017-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a class of analytic functions generated by fractional integral operator
Abstract In this note, we improve the idea of the Tsallis entropy in a complex domain. This improvement is contingent on the fractional operator in a complex domain (type Alexander). We clarify some new classes of analytic functions, which are planned in view of the geometry function theory. This category of entropy is called fractional entropy; accordingly, we demand them fractional entropic geometry classes. Other geometric properties are established in the sequel. Our exhibition is supported by the Maxwell Lemma and Jack Lemma.