场助烧结氧化物弥散增强V-4Cr-4Ti合金直流迁移率动态评价

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Mechanical and Materials Engineering Pub Date : 2017-07-24 DOI:10.1186/s40712-017-0081-7
Vinoadh Kumar Krishnan, Kumaran Sinnaeruvadi
{"title":"场助烧结氧化物弥散增强V-4Cr-4Ti合金直流迁移率动态评价","authors":"Vinoadh Kumar Krishnan,&nbsp;Kumaran Sinnaeruvadi","doi":"10.1186/s40712-017-0081-7","DOIUrl":null,"url":null,"abstract":"<p>Vanadium alloy is one of the potential candidate material for structural applications in a commercial fusion reactor. Extended survival of a structural material has a direct consequence on the net energy produced in a fusion reaction, it is important to develop ultra-functional materials with tailored microstructures, to meet the harsh fusion environments. Microstructure of material, indeed depend upon the thermodynamics and kinetics of material processing.</p><p>Aiming to meet the harsh fusion conditions, we have developed oxide dispersion strengthened V-4Cr-4Ti alloys by high energy ball milling and field assisted sintering technique. Possible microstructural, morphological aftermaths observed in ball milled yttria dispersed V-4Cr-4Ti powders is explored.</p><p>Electron microscopy and laser particle analysis acknowledge that yttria addition aids powder agglomeration during ball milling. Ball milled powder was then consolidated (to a relative density of ~100%) using field assisted sintering technique, under optimal sintering conditions. Densification profile has implied that heterogeneous powder characteristic (apparent particle size and shape of powder) tends to impede the direct-current conductivity across the powder particle during various stages of field assisted sintering. In order to understand the kinetics of the field assisted sintering process on the starting powders, a new method was developed to compute the activation energy required for the direct-current conductivity across the individual powder particles. Relatively higher activation energy (for direct-current conductivity) is required for sintering yttria dispersed V-4Cr-4Ti powder than its V-4Cr-4Ti counterpart.</p><p>Quantitative dynamic sintering kinetics analysis of FAST processed vanadium alloys</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-017-0081-7","citationCount":"0","resultStr":"{\"title\":\"Dynamic assessment of direct-current mobility in field-assisted sintered oxide dispersion-strengthened V-4Cr-4Ti alloys\",\"authors\":\"Vinoadh Kumar Krishnan,&nbsp;Kumaran Sinnaeruvadi\",\"doi\":\"10.1186/s40712-017-0081-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vanadium alloy is one of the potential candidate material for structural applications in a commercial fusion reactor. Extended survival of a structural material has a direct consequence on the net energy produced in a fusion reaction, it is important to develop ultra-functional materials with tailored microstructures, to meet the harsh fusion environments. Microstructure of material, indeed depend upon the thermodynamics and kinetics of material processing.</p><p>Aiming to meet the harsh fusion conditions, we have developed oxide dispersion strengthened V-4Cr-4Ti alloys by high energy ball milling and field assisted sintering technique. Possible microstructural, morphological aftermaths observed in ball milled yttria dispersed V-4Cr-4Ti powders is explored.</p><p>Electron microscopy and laser particle analysis acknowledge that yttria addition aids powder agglomeration during ball milling. Ball milled powder was then consolidated (to a relative density of ~100%) using field assisted sintering technique, under optimal sintering conditions. Densification profile has implied that heterogeneous powder characteristic (apparent particle size and shape of powder) tends to impede the direct-current conductivity across the powder particle during various stages of field assisted sintering. In order to understand the kinetics of the field assisted sintering process on the starting powders, a new method was developed to compute the activation energy required for the direct-current conductivity across the individual powder particles. Relatively higher activation energy (for direct-current conductivity) is required for sintering yttria dispersed V-4Cr-4Ti powder than its V-4Cr-4Ti counterpart.</p><p>Quantitative dynamic sintering kinetics analysis of FAST processed vanadium alloys</p>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2017-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40712-017-0081-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-017-0081-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-017-0081-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钒合金是商业核聚变反应堆结构应用的潜在候选材料之一。结构材料的寿命延长直接影响聚变反应产生的净能量,因此开发具有定制微结构的超功能材料以满足恶劣的聚变环境是非常重要的。材料的微观结构,确实取决于材料加工的热力学和动力学。为了满足苛刻的熔合条件,采用高能球磨和场助烧结技术研制了氧化物弥散强化V-4Cr-4Ti合金。探讨了球磨氧化钇分散的V-4Cr-4Ti粉末可能的显微结构和形态学变化。电子显微镜和激光颗粒分析表明,添加钇有助于球磨过程中的粉末团聚。然后在最佳烧结条件下,使用场辅助烧结技术将球磨粉末固结(相对密度约为100%)。致密化曲线表明,在场助烧结的各个阶段,粉末的非均质特性(表观粒度和粉末形状)往往会阻碍粉末颗粒之间的直流电导电性。为了了解起始粉末的场辅助烧结过程动力学,开发了一种新的方法来计算单个粉末颗粒的直流电导率所需的活化能。烧结钇分散的V-4Cr-4Ti粉末需要比V-4Cr-4Ti粉末更高的活化能(用于直流导电性)。FAST加工钒合金的定量动态烧结动力学分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic assessment of direct-current mobility in field-assisted sintered oxide dispersion-strengthened V-4Cr-4Ti alloys

Vanadium alloy is one of the potential candidate material for structural applications in a commercial fusion reactor. Extended survival of a structural material has a direct consequence on the net energy produced in a fusion reaction, it is important to develop ultra-functional materials with tailored microstructures, to meet the harsh fusion environments. Microstructure of material, indeed depend upon the thermodynamics and kinetics of material processing.

Aiming to meet the harsh fusion conditions, we have developed oxide dispersion strengthened V-4Cr-4Ti alloys by high energy ball milling and field assisted sintering technique. Possible microstructural, morphological aftermaths observed in ball milled yttria dispersed V-4Cr-4Ti powders is explored.

Electron microscopy and laser particle analysis acknowledge that yttria addition aids powder agglomeration during ball milling. Ball milled powder was then consolidated (to a relative density of ~100%) using field assisted sintering technique, under optimal sintering conditions. Densification profile has implied that heterogeneous powder characteristic (apparent particle size and shape of powder) tends to impede the direct-current conductivity across the powder particle during various stages of field assisted sintering. In order to understand the kinetics of the field assisted sintering process on the starting powders, a new method was developed to compute the activation energy required for the direct-current conductivity across the individual powder particles. Relatively higher activation energy (for direct-current conductivity) is required for sintering yttria dispersed V-4Cr-4Ti powder than its V-4Cr-4Ti counterpart.

Quantitative dynamic sintering kinetics analysis of FAST processed vanadium alloys

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊最新文献
Influence of temperature on the compression properties of expanded thermoplastic polyurethane (ETPU) Comparative efficacy of citric acid/tartaric acid/malic acid additive-based polyvinyl alcohol-starch composite films Iron-based smart alloys for critical applications: a review on processing, properties, phase transformations, and current trends CuMn2O4 spinel electrodes: effect of the hydrothermal treatment duration on electrochemical performance Synthesis of composite films using polymer blends of chitosan and cellulose nanocrystals from marine origin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1