灌溉改善葡萄赤霉病病毒感染葡萄的葡萄生理和果实组成。

IF 2.2 3区 农林科学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY American Journal of Enology and Viticulture Pub Date : 2021-06-08 DOI:10.5344/ajev.2021.21007
Cody R. Copp, A. Levin
{"title":"灌溉改善葡萄赤霉病病毒感染葡萄的葡萄生理和果实组成。","authors":"Cody R. Copp, A. Levin","doi":"10.5344/ajev.2021.21007","DOIUrl":null,"url":null,"abstract":"Grapevine red blotch virus (GRBV) negatively impacts vine physiology and fruit quality in Vitis vinifera L. by reducing photosynthetic rate, total soluble solids (TSS), and berry anthocyanin concentration. Currently, growers have few management strategies beyond removal of infected vines, which may be particularly costly in vineyards with high disease incidence. The present study was established in 2018 in a GRBV-infected Pinot noir vineyard in southern Oregon to investigate whether reducing vine stress with cultural practices could dampen the impact of the disease on vine physiology and fruit quality. The effects of control and supplemental levels of irrigation and fertilizer on vine growth and physiology, disease severity, and fruit composition were observed over three years. Supplemental irrigation affected vine physiology and fruit composition in 2019 and 2020, but fertilization had no significant effect over three years. Photosynthetic rate, vegetative growth, vine yield, berry weight, TSS, and titratable acidity were increased with supplemental irrigation while disease severity (symptomatic leaves per vine) was reduced. Supplemental irrigation did not have consistent effects on secondary metabolites, though an increase in anthocyanin concentration was observed in 2020 despite an increase in berry size. Irrespective of applied water amounts, maintaining a higher vine water status effectively increased photosynthesis and canopy size, which resulted in greater sugar accumulation. Ultimately, these results suggest that maintaining a high vine water status (Ψstem > -0.8 MPa) may mitigate some of the negative effects of GRBV on vine physiology and fruit composition.","PeriodicalId":7461,"journal":{"name":"American Journal of Enology and Viticulture","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Irrigation Improves Vine Physiology and Fruit Composition in Grapevine Red Blotch Virus-Infected Vitis vinifera L.\",\"authors\":\"Cody R. Copp, A. Levin\",\"doi\":\"10.5344/ajev.2021.21007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grapevine red blotch virus (GRBV) negatively impacts vine physiology and fruit quality in Vitis vinifera L. by reducing photosynthetic rate, total soluble solids (TSS), and berry anthocyanin concentration. Currently, growers have few management strategies beyond removal of infected vines, which may be particularly costly in vineyards with high disease incidence. The present study was established in 2018 in a GRBV-infected Pinot noir vineyard in southern Oregon to investigate whether reducing vine stress with cultural practices could dampen the impact of the disease on vine physiology and fruit quality. The effects of control and supplemental levels of irrigation and fertilizer on vine growth and physiology, disease severity, and fruit composition were observed over three years. Supplemental irrigation affected vine physiology and fruit composition in 2019 and 2020, but fertilization had no significant effect over three years. Photosynthetic rate, vegetative growth, vine yield, berry weight, TSS, and titratable acidity were increased with supplemental irrigation while disease severity (symptomatic leaves per vine) was reduced. Supplemental irrigation did not have consistent effects on secondary metabolites, though an increase in anthocyanin concentration was observed in 2020 despite an increase in berry size. Irrespective of applied water amounts, maintaining a higher vine water status effectively increased photosynthesis and canopy size, which resulted in greater sugar accumulation. Ultimately, these results suggest that maintaining a high vine water status (Ψstem > -0.8 MPa) may mitigate some of the negative effects of GRBV on vine physiology and fruit composition.\",\"PeriodicalId\":7461,\"journal\":{\"name\":\"American Journal of Enology and Viticulture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Enology and Viticulture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5344/ajev.2021.21007\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Enology and Viticulture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5344/ajev.2021.21007","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

葡萄红色斑点病毒(GRBV)通过降低光合速率、总可溶性固形物(TSS)和浆果花青素浓度,对葡萄的生理和果实质量产生负面影响。目前,除了清除受感染的葡萄藤外,种植者几乎没有其他管理策略,这在疾病高发的葡萄园可能特别昂贵。本研究于2018年在俄勒冈州南部一个受GRBV感染的黑皮诺葡萄园进行,旨在调查通过培养减少葡萄压力是否可以减轻疾病对葡萄生理和果实质量的影响。在三年的时间里,观察了控制和补充灌溉和肥料水平对葡萄生长和生理、疾病严重程度和果实成分的影响。2019年和2020年,补充灌溉影响了葡萄藤的生理和果实组成,但施肥在三年内没有显著影响。补充灌溉增加了光合速率、营养生长、葡萄产量、浆果重量、TSS和可滴定酸度,同时降低了疾病的严重程度(每株葡萄的症状叶片)。补充灌溉对次生代谢产物的影响并不一致,尽管2020年观察到花青素浓度增加,但浆果大小增加。无论施用水量如何,保持较高的葡萄水分状态都能有效地增加光合作用和树冠大小,从而导致更多的糖积累。最终,这些结果表明,保持较高的葡萄水分状态(Ψ茎>-0.8MPa)可以减轻GRBV对葡萄生理和果实成分的一些负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Irrigation Improves Vine Physiology and Fruit Composition in Grapevine Red Blotch Virus-Infected Vitis vinifera L.
Grapevine red blotch virus (GRBV) negatively impacts vine physiology and fruit quality in Vitis vinifera L. by reducing photosynthetic rate, total soluble solids (TSS), and berry anthocyanin concentration. Currently, growers have few management strategies beyond removal of infected vines, which may be particularly costly in vineyards with high disease incidence. The present study was established in 2018 in a GRBV-infected Pinot noir vineyard in southern Oregon to investigate whether reducing vine stress with cultural practices could dampen the impact of the disease on vine physiology and fruit quality. The effects of control and supplemental levels of irrigation and fertilizer on vine growth and physiology, disease severity, and fruit composition were observed over three years. Supplemental irrigation affected vine physiology and fruit composition in 2019 and 2020, but fertilization had no significant effect over three years. Photosynthetic rate, vegetative growth, vine yield, berry weight, TSS, and titratable acidity were increased with supplemental irrigation while disease severity (symptomatic leaves per vine) was reduced. Supplemental irrigation did not have consistent effects on secondary metabolites, though an increase in anthocyanin concentration was observed in 2020 despite an increase in berry size. Irrespective of applied water amounts, maintaining a higher vine water status effectively increased photosynthesis and canopy size, which resulted in greater sugar accumulation. Ultimately, these results suggest that maintaining a high vine water status (Ψstem > -0.8 MPa) may mitigate some of the negative effects of GRBV on vine physiology and fruit composition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Enology and Viticulture
American Journal of Enology and Viticulture 农林科学-生物工程与应用微生物
CiteScore
3.80
自引率
10.50%
发文量
27
审稿时长
12-24 weeks
期刊介绍: The American Journal of Enology and Viticulture (AJEV), published quarterly, is an official journal of the American Society for Enology and Viticulture (ASEV) and is the premier journal in the English language dedicated to scientific research on winemaking and grapegrowing. AJEV publishes full-length research papers, literature reviews, research notes, and technical briefs on various aspects of enology and viticulture, including wine chemistry, sensory science, process engineering, wine quality assessments, microbiology, methods development, plant pathogenesis, diseases and pests of grape, rootstock and clonal evaluation, effect of field practices, and grape genetics and breeding. All papers are peer reviewed, and authorship of papers is not limited to members of ASEV. The science editor, along with the viticulture, enology, and associate editors, are drawn from academic and research institutions worldwide and guide the content of the Journal.
期刊最新文献
Red Wine Fermentation Alters Grape Seed Morphology and Internal Porosity Phenological Stage and Tissue Type of Grapevines Impact Concentrations and Variability of Mineral Nutrients Machine-Learning Methods for the Identification of Key Predictors of Site-Specific Vineyard Yield and Vine Size Gibberellic Acid for Table Grape Inflorescence Elongation: Is It Worth It? Consumer Hedonic Testing and Chemical Analysis of Iowa Wines Made from Five Cold-Hardy Interspecific Grape Varieties (Vitisspp.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1