封锁期间的窗户操作行为和室内空气质量:伦敦一项基于监测的模拟辅助研究

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Building Services Engineering Research & Technology Pub Date : 2021-05-21 DOI:10.1177/01436244211017786
F. Tahmasebi, Yan Wang, Elizabeth Cooper, Daniel Godoy Shimizu, S. Stamp, D. Mumovic
{"title":"封锁期间的窗户操作行为和室内空气质量:伦敦一项基于监测的模拟辅助研究","authors":"F. Tahmasebi, Yan Wang, Elizabeth Cooper, Daniel Godoy Shimizu, S. Stamp, D. Mumovic","doi":"10.1177/01436244211017786","DOIUrl":null,"url":null,"abstract":"The Covid-19 outbreak has resulted in new patterns of home occupancy, the implications of which for indoor air quality (IAQ) and energy use are not well-known. In this context, the present study investigates 8 flats in London to uncover if during a lockdown, (a) IAQ in the monitored flats deteriorated, (b) the patterns of window operation by occupants changed, and (c) more effective ventilation patterns could enhance IAQ without significant increases in heating energy demand. To this end, one-year’s worth of monitored data on indoor and outdoor environment along with occupant use of windows has been used to analyse the impact of lockdown on IAQ and infer probabilistic models of window operation behaviour. Moreover, using on-site CO2 data, monitored occupancy and operation of windows, the team has calibrated a thermal performance model of one of the flats to investigate the implications of alternative ventilation strategies. The results suggest that despite the extended occupancy during lockdown, occupants relied less on natural ventilation, which led to an increase of median CO2 concentration by up to 300 ppm. However, simple natural ventilation patterns or use of mechanical ventilation with heat recovery proves to be very effective to maintain acceptable IAQ. Practical application : This study provides evidence on the deterioration of indoor air quality resulting from homeworking during imposed lockdowns. It also tests and recommends specific ventilation strategies to maintain acceptable indoor air quality at home despite the extended occupancy hours.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/01436244211017786","citationCount":"10","resultStr":"{\"title\":\"Window operation behaviour and indoor air quality during lockdown: A monitoring-based simulation-assisted study in London\",\"authors\":\"F. Tahmasebi, Yan Wang, Elizabeth Cooper, Daniel Godoy Shimizu, S. Stamp, D. Mumovic\",\"doi\":\"10.1177/01436244211017786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Covid-19 outbreak has resulted in new patterns of home occupancy, the implications of which for indoor air quality (IAQ) and energy use are not well-known. In this context, the present study investigates 8 flats in London to uncover if during a lockdown, (a) IAQ in the monitored flats deteriorated, (b) the patterns of window operation by occupants changed, and (c) more effective ventilation patterns could enhance IAQ without significant increases in heating energy demand. To this end, one-year’s worth of monitored data on indoor and outdoor environment along with occupant use of windows has been used to analyse the impact of lockdown on IAQ and infer probabilistic models of window operation behaviour. Moreover, using on-site CO2 data, monitored occupancy and operation of windows, the team has calibrated a thermal performance model of one of the flats to investigate the implications of alternative ventilation strategies. The results suggest that despite the extended occupancy during lockdown, occupants relied less on natural ventilation, which led to an increase of median CO2 concentration by up to 300 ppm. However, simple natural ventilation patterns or use of mechanical ventilation with heat recovery proves to be very effective to maintain acceptable IAQ. Practical application : This study provides evidence on the deterioration of indoor air quality resulting from homeworking during imposed lockdowns. It also tests and recommends specific ventilation strategies to maintain acceptable indoor air quality at home despite the extended occupancy hours.\",\"PeriodicalId\":50724,\"journal\":{\"name\":\"Building Services Engineering Research & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/01436244211017786\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Services Engineering Research & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01436244211017786\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Services Engineering Research & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01436244211017786","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 10

摘要

新冠肺炎疫情导致了新的家庭入住模式,其对室内空气质量(IAQ)和能源使用的影响尚不清楚。在这种情况下,本研究调查了伦敦的8套公寓,以揭示在封锁期间,(a)受监测公寓的室内空气质量是否恶化,(b)居住者的窗户操作模式是否发生了变化,以及(c)更有效的通风模式是否可以在不显著增加热能需求的情况下提高室内空气质量。为此,已经使用了一年的室内外环境监测数据以及居住者使用窗户的情况,来分析封锁对室内空气质量的影响,并推断窗户操作行为的概率模型。此外,利用现场二氧化碳数据、监测的入住率和窗户操作,该团队校准了其中一套公寓的热性能模型,以调查替代通风策略的影响。结果表明,尽管封锁期间入住时间延长,但入住者对自然通风的依赖程度较低,这导致二氧化碳浓度中值增加了300 ppm。然而,简单的自然通风模式或使用带热回收的机械通风被证明对保持可接受的室内空气质量非常有效。实际应用:这项研究为强制封锁期间在家工作导致室内空气质量恶化提供了证据。它还测试并建议了具体的通风策略,以在延长入住时间的情况下保持家中可接受的室内空气质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Window operation behaviour and indoor air quality during lockdown: A monitoring-based simulation-assisted study in London
The Covid-19 outbreak has resulted in new patterns of home occupancy, the implications of which for indoor air quality (IAQ) and energy use are not well-known. In this context, the present study investigates 8 flats in London to uncover if during a lockdown, (a) IAQ in the monitored flats deteriorated, (b) the patterns of window operation by occupants changed, and (c) more effective ventilation patterns could enhance IAQ without significant increases in heating energy demand. To this end, one-year’s worth of monitored data on indoor and outdoor environment along with occupant use of windows has been used to analyse the impact of lockdown on IAQ and infer probabilistic models of window operation behaviour. Moreover, using on-site CO2 data, monitored occupancy and operation of windows, the team has calibrated a thermal performance model of one of the flats to investigate the implications of alternative ventilation strategies. The results suggest that despite the extended occupancy during lockdown, occupants relied less on natural ventilation, which led to an increase of median CO2 concentration by up to 300 ppm. However, simple natural ventilation patterns or use of mechanical ventilation with heat recovery proves to be very effective to maintain acceptable IAQ. Practical application : This study provides evidence on the deterioration of indoor air quality resulting from homeworking during imposed lockdowns. It also tests and recommends specific ventilation strategies to maintain acceptable indoor air quality at home despite the extended occupancy hours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Building Services Engineering Research & Technology
Building Services Engineering Research & Technology 工程技术-结构与建筑技术
CiteScore
4.30
自引率
5.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Building Services Engineering Research & Technology is one of the foremost, international peer reviewed journals that publishes the highest quality original research relevant to today’s Built Environment. Published in conjunction with CIBSE, this impressive journal reports on the latest research providing you with an invaluable guide to recent developments in the field.
期刊最新文献
Frost suppression performance of an air source heat pump using sensible heat from indoor air to preheat outdoor air A revised PMV model: From a physiological standpoint Prediction models of bioaerosols inside office buildings: A field study investigation An overheating criterion for bedrooms in temperate climates: Derivation and application The influence of different offset modes on the drainage characteristics of a double stack drainage system in a high-rise building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1