Daniel R Halloran, Brian P. Heubel, Connor MacMurray, D. Root, M. Eskander, Sean McTague, Heather Pelkey, A. Nohe
{"title":"从人股骨头分离的细胞分化为功能性破骨细胞","authors":"Daniel R Halloran, Brian P. Heubel, Connor MacMurray, D. Root, M. Eskander, Sean McTague, Heather Pelkey, A. Nohe","doi":"10.3390/jdb10010006","DOIUrl":null,"url":null,"abstract":"Proper formation of the skeleton during development is crucial for the mobility of humans and the maintenance of essential organs. The production of bone is regulated by osteoblasts and osteoclasts. An imbalance of these cells can lead to a decrease in bone mineral density, which leads to fractures. While many studies are emerging to understand the role of osteoblasts, less studies are present about the role of osteoclasts. This present study utilized bone marrow cells isolated directly from the bone marrow of femoral heads obtained from osteoarthritic (OA) patients after undergoing hip replacement surgery. Here, we used tartrate resistant acid phosphatase (TRAP) staining, Cathepsin K, and nuclei to identity osteoclasts and their functionality after stimulation with macrophage-colony stimulation factor (M-CSF) and receptor activator of nuclear factor kappa-β ligand (RANKL). Our data demonstrated that isolated cells can be differentiated into functional osteoclasts, as indicated by the 92% and 83% of cells that stained positive for TRAP and Cathepsin K, respectively. Furthermore, isolated cells remain viable and terminally differentiate into osteoclasts when stimulated with RANKL. These data demonstrate that cells isolated from human femoral heads can be differentiated into osteoclasts to study bone disorders during development and adulthood.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Differentiation of Cells Isolated from Human Femoral Heads into Functional Osteoclasts\",\"authors\":\"Daniel R Halloran, Brian P. Heubel, Connor MacMurray, D. Root, M. Eskander, Sean McTague, Heather Pelkey, A. Nohe\",\"doi\":\"10.3390/jdb10010006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proper formation of the skeleton during development is crucial for the mobility of humans and the maintenance of essential organs. The production of bone is regulated by osteoblasts and osteoclasts. An imbalance of these cells can lead to a decrease in bone mineral density, which leads to fractures. While many studies are emerging to understand the role of osteoblasts, less studies are present about the role of osteoclasts. This present study utilized bone marrow cells isolated directly from the bone marrow of femoral heads obtained from osteoarthritic (OA) patients after undergoing hip replacement surgery. Here, we used tartrate resistant acid phosphatase (TRAP) staining, Cathepsin K, and nuclei to identity osteoclasts and their functionality after stimulation with macrophage-colony stimulation factor (M-CSF) and receptor activator of nuclear factor kappa-β ligand (RANKL). Our data demonstrated that isolated cells can be differentiated into functional osteoclasts, as indicated by the 92% and 83% of cells that stained positive for TRAP and Cathepsin K, respectively. Furthermore, isolated cells remain viable and terminally differentiate into osteoclasts when stimulated with RANKL. These data demonstrate that cells isolated from human femoral heads can be differentiated into osteoclasts to study bone disorders during development and adulthood.\",\"PeriodicalId\":15563,\"journal\":{\"name\":\"Journal of Developmental Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jdb10010006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb10010006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Differentiation of Cells Isolated from Human Femoral Heads into Functional Osteoclasts
Proper formation of the skeleton during development is crucial for the mobility of humans and the maintenance of essential organs. The production of bone is regulated by osteoblasts and osteoclasts. An imbalance of these cells can lead to a decrease in bone mineral density, which leads to fractures. While many studies are emerging to understand the role of osteoblasts, less studies are present about the role of osteoclasts. This present study utilized bone marrow cells isolated directly from the bone marrow of femoral heads obtained from osteoarthritic (OA) patients after undergoing hip replacement surgery. Here, we used tartrate resistant acid phosphatase (TRAP) staining, Cathepsin K, and nuclei to identity osteoclasts and their functionality after stimulation with macrophage-colony stimulation factor (M-CSF) and receptor activator of nuclear factor kappa-β ligand (RANKL). Our data demonstrated that isolated cells can be differentiated into functional osteoclasts, as indicated by the 92% and 83% of cells that stained positive for TRAP and Cathepsin K, respectively. Furthermore, isolated cells remain viable and terminally differentiate into osteoclasts when stimulated with RANKL. These data demonstrate that cells isolated from human femoral heads can be differentiated into osteoclasts to study bone disorders during development and adulthood.
期刊介绍:
The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.