{"title":"关于广义度概念在$\\mathbb{C}^{d}$中的超限直径","authors":"N. Levenberg, F. Wielonsky","doi":"10.7146/math.scand.a-126053","DOIUrl":null,"url":null,"abstract":"We give a general formula for the $C$-transfinite diameter $\\delta_C(K)$ of a compact set $K\\subset \\mathbb{C}^2$ which is a product of univariate compacta where $C\\subset (\\mathbb{R}^+)^2$ is a convex body. Along the way we prove a Rumely type formula relating $\\delta_C(K)$ and the $C$-Robin function $\\rho_{V_{C,K}}$ of the $C$-extremal plurisubharmonic function $V_{C,K}$ for $C \\subset (\\mathbb{R}^+)^2$ a triangle $T_{a,b}$ with vertices $(0,0)$, $(b,0)$, $(0,a)$. Finally, we show how the definition of $\\delta_C(K)$ can be extended to include many nonconvex bodies $C\\subset \\mathbb{R}^d$ for $d$-circled sets $K\\subset \\mathbb{C}^d$, and we prove an integral formula for $\\delta_C(K)$ which we use to compute a formula for $\\delta_C(\\mathbb{B})$ where $\\mathbb{B}$ is the Euclidean unit ball in $\\mathbb{C}^2$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On transfinite diameters in $\\\\mathbb{C}^{d}$ for generalized notions of degree\",\"authors\":\"N. Levenberg, F. Wielonsky\",\"doi\":\"10.7146/math.scand.a-126053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a general formula for the $C$-transfinite diameter $\\\\delta_C(K)$ of a compact set $K\\\\subset \\\\mathbb{C}^2$ which is a product of univariate compacta where $C\\\\subset (\\\\mathbb{R}^+)^2$ is a convex body. Along the way we prove a Rumely type formula relating $\\\\delta_C(K)$ and the $C$-Robin function $\\\\rho_{V_{C,K}}$ of the $C$-extremal plurisubharmonic function $V_{C,K}$ for $C \\\\subset (\\\\mathbb{R}^+)^2$ a triangle $T_{a,b}$ with vertices $(0,0)$, $(b,0)$, $(0,a)$. Finally, we show how the definition of $\\\\delta_C(K)$ can be extended to include many nonconvex bodies $C\\\\subset \\\\mathbb{R}^d$ for $d$-circled sets $K\\\\subset \\\\mathbb{C}^d$, and we prove an integral formula for $\\\\delta_C(K)$ which we use to compute a formula for $\\\\delta_C(\\\\mathbb{B})$ where $\\\\mathbb{B}$ is the Euclidean unit ball in $\\\\mathbb{C}^2$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-126053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-126053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On transfinite diameters in $\mathbb{C}^{d}$ for generalized notions of degree
We give a general formula for the $C$-transfinite diameter $\delta_C(K)$ of a compact set $K\subset \mathbb{C}^2$ which is a product of univariate compacta where $C\subset (\mathbb{R}^+)^2$ is a convex body. Along the way we prove a Rumely type formula relating $\delta_C(K)$ and the $C$-Robin function $\rho_{V_{C,K}}$ of the $C$-extremal plurisubharmonic function $V_{C,K}$ for $C \subset (\mathbb{R}^+)^2$ a triangle $T_{a,b}$ with vertices $(0,0)$, $(b,0)$, $(0,a)$. Finally, we show how the definition of $\delta_C(K)$ can be extended to include many nonconvex bodies $C\subset \mathbb{R}^d$ for $d$-circled sets $K\subset \mathbb{C}^d$, and we prove an integral formula for $\delta_C(K)$ which we use to compute a formula for $\delta_C(\mathbb{B})$ where $\mathbb{B}$ is the Euclidean unit ball in $\mathbb{C}^2$.