四面体网格上Stokes方程的Neilan无发散有限元

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-06-28 DOI:10.1002/num.23055
Shangyou Zhang
{"title":"四面体网格上Stokes方程的Neilan无发散有限元","authors":"Shangyou Zhang","doi":"10.1002/num.23055","DOIUrl":null,"url":null,"abstract":"The Neilan Pk$$ {P}_k $$ ‐ Pk−1$$ {P}_{k-1} $$ divergence‐free finite element is stable on any tetrahedral grid, where the piece‐wise Pk$$ {P}_k $$ polynomial velocity is C0$$ {C}^0 $$ on the grid, C1$$ {C}^1 $$ on edges and C2$$ {C}^2 $$ at vertices, and the piece‐wise Pk−1$$ {P}_{k-1} $$ polynomial pressure is C0$$ {C}^0 $$ on edges and C1$$ {C}^1 $$ at vertices. However the method does not work if the exact pressure solution does not vanish on all domain edges, because of the excessive continuity requirements. We extend the Neilan element by removing the extra requirements at domain boundary edges. That is, if a vertex is on a domain boundary edge and if an edge has one endpoint on a domain boundary edge, the velocity is only C0$$ {C}^0 $$ at the vertex and on the edge, respectively, and the pressure is totally discontinuous there. Under the condition that no tetrahedron in the grid has more than one face‐triangle on the domain boundary, we prove that the extended finite element is stable, and consequently produces solutions of optimal order convergence for all Stokes problems. A numerical example is given, confirming the theory.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neilan's divergence‐free finite elements for Stokes equations on tetrahedral grids\",\"authors\":\"Shangyou Zhang\",\"doi\":\"10.1002/num.23055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Neilan Pk$$ {P}_k $$ ‐ Pk−1$$ {P}_{k-1} $$ divergence‐free finite element is stable on any tetrahedral grid, where the piece‐wise Pk$$ {P}_k $$ polynomial velocity is C0$$ {C}^0 $$ on the grid, C1$$ {C}^1 $$ on edges and C2$$ {C}^2 $$ at vertices, and the piece‐wise Pk−1$$ {P}_{k-1} $$ polynomial pressure is C0$$ {C}^0 $$ on edges and C1$$ {C}^1 $$ at vertices. However the method does not work if the exact pressure solution does not vanish on all domain edges, because of the excessive continuity requirements. We extend the Neilan element by removing the extra requirements at domain boundary edges. That is, if a vertex is on a domain boundary edge and if an edge has one endpoint on a domain boundary edge, the velocity is only C0$$ {C}^0 $$ at the vertex and on the edge, respectively, and the pressure is totally discontinuous there. Under the condition that no tetrahedron in the grid has more than one face‐triangle on the domain boundary, we prove that the extended finite element is stable, and consequently produces solutions of optimal order convergence for all Stokes problems. A numerical example is given, confirming the theory.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neilan's divergence‐free finite elements for Stokes equations on tetrahedral grids
The Neilan Pk$$ {P}_k $$ ‐ Pk−1$$ {P}_{k-1} $$ divergence‐free finite element is stable on any tetrahedral grid, where the piece‐wise Pk$$ {P}_k $$ polynomial velocity is C0$$ {C}^0 $$ on the grid, C1$$ {C}^1 $$ on edges and C2$$ {C}^2 $$ at vertices, and the piece‐wise Pk−1$$ {P}_{k-1} $$ polynomial pressure is C0$$ {C}^0 $$ on edges and C1$$ {C}^1 $$ at vertices. However the method does not work if the exact pressure solution does not vanish on all domain edges, because of the excessive continuity requirements. We extend the Neilan element by removing the extra requirements at domain boundary edges. That is, if a vertex is on a domain boundary edge and if an edge has one endpoint on a domain boundary edge, the velocity is only C0$$ {C}^0 $$ at the vertex and on the edge, respectively, and the pressure is totally discontinuous there. Under the condition that no tetrahedron in the grid has more than one face‐triangle on the domain boundary, we prove that the extended finite element is stable, and consequently produces solutions of optimal order convergence for all Stokes problems. A numerical example is given, confirming the theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1