任务特定算法建议接受:综述和未来研究方向

Esther Kaufmann , Alvaro Chacon , Edgar E. Kausel , Nicolas Herrera , Tomas Reyes
{"title":"任务特定算法建议接受:综述和未来研究方向","authors":"Esther Kaufmann ,&nbsp;Alvaro Chacon ,&nbsp;Edgar E. Kausel ,&nbsp;Nicolas Herrera ,&nbsp;Tomas Reyes","doi":"10.1016/j.dim.2023.100040","DOIUrl":null,"url":null,"abstract":"<div><p>Due to digitalization resulting in artificial intelligence advice, there are increasing studies on advice taking, exploring individual and task-relevant factors associated with the acceptance of algorithm advice. However, to our notice, there are no reviews of studies on the acceptance of algorithm advice that focus explicitly on a task level that consider methodological features and provide a quantitative measure of algorithm acceptance. Our review closes these research gaps. We evaluated 44 studies, 122 tasks, and 89,751 participants. Our review shows that algorithm aversion is present in 75% of the 122 considered tasks. In addition, our quantified measures underscore some shortcomings by the underrepresented individual, task, or methodological characteristics—for example, the expertise of advice takers and longitudinal studies. Finally, we provide valuable recommendations to continue research on algorithm acceptance.</p></div>","PeriodicalId":72769,"journal":{"name":"Data and information management","volume":"7 3","pages":"Article 100040"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Task-specific algorithm advice acceptance: A review and directions for future research\",\"authors\":\"Esther Kaufmann ,&nbsp;Alvaro Chacon ,&nbsp;Edgar E. Kausel ,&nbsp;Nicolas Herrera ,&nbsp;Tomas Reyes\",\"doi\":\"10.1016/j.dim.2023.100040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to digitalization resulting in artificial intelligence advice, there are increasing studies on advice taking, exploring individual and task-relevant factors associated with the acceptance of algorithm advice. However, to our notice, there are no reviews of studies on the acceptance of algorithm advice that focus explicitly on a task level that consider methodological features and provide a quantitative measure of algorithm acceptance. Our review closes these research gaps. We evaluated 44 studies, 122 tasks, and 89,751 participants. Our review shows that algorithm aversion is present in 75% of the 122 considered tasks. In addition, our quantified measures underscore some shortcomings by the underrepresented individual, task, or methodological characteristics—for example, the expertise of advice takers and longitudinal studies. Finally, we provide valuable recommendations to continue research on algorithm acceptance.</p></div>\",\"PeriodicalId\":72769,\"journal\":{\"name\":\"Data and information management\",\"volume\":\"7 3\",\"pages\":\"Article 100040\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data and information management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2543925123000141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and information management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2543925123000141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于数字化带来了人工智能建议,关于建议接受的研究越来越多,探索与接受算法建议相关的个人和任务相关因素。然而,我们注意到,没有关于算法建议接受度的研究综述,这些研究明确地关注任务级别,考虑方法特征并提供算法接受度的定量度量。我们的综述弥补了这些研究空白。我们评估了44项研究、122项任务和89,751名参与者。我们的回顾显示,在122个考虑的任务中,有75%存在算法厌恶。此外,我们的量化测量强调了由于个人、任务或方法特征的代表性不足而造成的一些缺陷,例如,建议接受者的专业知识和纵向研究。最后,对算法可接受性的进一步研究提出了有价值的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Task-specific algorithm advice acceptance: A review and directions for future research

Due to digitalization resulting in artificial intelligence advice, there are increasing studies on advice taking, exploring individual and task-relevant factors associated with the acceptance of algorithm advice. However, to our notice, there are no reviews of studies on the acceptance of algorithm advice that focus explicitly on a task level that consider methodological features and provide a quantitative measure of algorithm acceptance. Our review closes these research gaps. We evaluated 44 studies, 122 tasks, and 89,751 participants. Our review shows that algorithm aversion is present in 75% of the 122 considered tasks. In addition, our quantified measures underscore some shortcomings by the underrepresented individual, task, or methodological characteristics—for example, the expertise of advice takers and longitudinal studies. Finally, we provide valuable recommendations to continue research on algorithm acceptance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data and information management
Data and information management Management Information Systems, Library and Information Sciences
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
55 days
期刊最新文献
Erratum regarding missing Declaration of Competing Interest statements in previously published articles (Volume 6, Issues 1–4) Improved detection of transient events in wide area sky survey using convolutional neural networks An evaluation method of academic output that considers productivity differences Adaptive K-means clustering based under-sampling methods to solve the class imbalance problem Does internet use affect public risk perception? — From the perspective of political participation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1