{"title":"一种用于深度边缘增强的图像引导网络","authors":"Kuan-Ting Lee, Enyu Liu, J. Yang, Li Hong","doi":"10.21203/rs.3.rs-958953/v1","DOIUrl":null,"url":null,"abstract":"With the rapid development of 3D coding and display technologies, numerous applications are emerging to target human immersive entertainments. To achieve a prime 3D visual experience, high accuracy depth maps play a crucial role. However, depth maps retrieved from most devices still suffer inaccuracies at object boundaries. Therefore, a depth enhancement system is usually needed to correct the error. Recent developments by applying deep learning to deep enhancement have shown their promising improvement. In this paper, we propose a deep depth enhancement network system that effectively corrects the inaccurate depth using color images as a guide. The proposed network contains both depth and image branches, where we combine a new set of features from the image branch with those from the depth branch. Experimental results show that the proposed system achieves a better depth correction performance than state of the art advanced networks. The ablation study reveals that the proposed loss functions in use of image information can enhance depth map accuracy effectively.","PeriodicalId":49322,"journal":{"name":"Eurasip Journal on Image and Video Processing","volume":"2022 1","pages":"1-14"},"PeriodicalIF":2.4000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An image-guided network for depth edge enhancement\",\"authors\":\"Kuan-Ting Lee, Enyu Liu, J. Yang, Li Hong\",\"doi\":\"10.21203/rs.3.rs-958953/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of 3D coding and display technologies, numerous applications are emerging to target human immersive entertainments. To achieve a prime 3D visual experience, high accuracy depth maps play a crucial role. However, depth maps retrieved from most devices still suffer inaccuracies at object boundaries. Therefore, a depth enhancement system is usually needed to correct the error. Recent developments by applying deep learning to deep enhancement have shown their promising improvement. In this paper, we propose a deep depth enhancement network system that effectively corrects the inaccurate depth using color images as a guide. The proposed network contains both depth and image branches, where we combine a new set of features from the image branch with those from the depth branch. Experimental results show that the proposed system achieves a better depth correction performance than state of the art advanced networks. The ablation study reveals that the proposed loss functions in use of image information can enhance depth map accuracy effectively.\",\"PeriodicalId\":49322,\"journal\":{\"name\":\"Eurasip Journal on Image and Video Processing\",\"volume\":\"2022 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Image and Video Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-958953/v1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Image and Video Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-958953/v1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An image-guided network for depth edge enhancement
With the rapid development of 3D coding and display technologies, numerous applications are emerging to target human immersive entertainments. To achieve a prime 3D visual experience, high accuracy depth maps play a crucial role. However, depth maps retrieved from most devices still suffer inaccuracies at object boundaries. Therefore, a depth enhancement system is usually needed to correct the error. Recent developments by applying deep learning to deep enhancement have shown their promising improvement. In this paper, we propose a deep depth enhancement network system that effectively corrects the inaccurate depth using color images as a guide. The proposed network contains both depth and image branches, where we combine a new set of features from the image branch with those from the depth branch. Experimental results show that the proposed system achieves a better depth correction performance than state of the art advanced networks. The ablation study reveals that the proposed loss functions in use of image information can enhance depth map accuracy effectively.
期刊介绍:
EURASIP Journal on Image and Video Processing is intended for researchers from both academia and industry, who are active in the multidisciplinary field of image and video processing. The scope of the journal covers all theoretical and practical aspects of the domain, from basic research to development of application.