COPS在行动:探索青少年心理治疗MATCH的使用结构

Psych Pub Date : 2023-04-19 DOI:10.3390/psych5020020
T. Rusch, Katherine E. Venturo-Conerly, Gioia Baja, P. Mair
{"title":"COPS在行动:探索青少年心理治疗MATCH的使用结构","authors":"T. Rusch, Katherine E. Venturo-Conerly, Gioia Baja, P. Mair","doi":"10.3390/psych5020020","DOIUrl":null,"url":null,"abstract":"This article is an introduction to Cluster Optimized Proximity Scaling (COPS) aimed at practitioners, as well as a tutorial on the usage of the corresponding R package cops. COPS is a variant of multidimensional scaling (MDS) that aims at providing a clustered configuration while still representing multivariate dissimilarities faithfully. It subsumes most popular MDS versions as special cases. We illustrate the ideas, use, flexibility and versatility of the method and the package with data from clinical psychology on how modules of the Modular Approach to Therapy for Children (MATCH) are used by clinicians in the wild. We supplement the COPS analyses with density-based hierarchical clustering in the original space and faceting with support vector machines. We find that scaling with COPS gives a sensible and insightful spatial arrangement of the modules, allows easy identification of clusters of modules and provides clear facets of modules corresponding to the MATCH protocols. In that respect COPS works better than both standard MDS and clustering.","PeriodicalId":93139,"journal":{"name":"Psych","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COPS in Action: Exploring Structure in the Usage of the Youth Psychotherapy MATCH\",\"authors\":\"T. Rusch, Katherine E. Venturo-Conerly, Gioia Baja, P. Mair\",\"doi\":\"10.3390/psych5020020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is an introduction to Cluster Optimized Proximity Scaling (COPS) aimed at practitioners, as well as a tutorial on the usage of the corresponding R package cops. COPS is a variant of multidimensional scaling (MDS) that aims at providing a clustered configuration while still representing multivariate dissimilarities faithfully. It subsumes most popular MDS versions as special cases. We illustrate the ideas, use, flexibility and versatility of the method and the package with data from clinical psychology on how modules of the Modular Approach to Therapy for Children (MATCH) are used by clinicians in the wild. We supplement the COPS analyses with density-based hierarchical clustering in the original space and faceting with support vector machines. We find that scaling with COPS gives a sensible and insightful spatial arrangement of the modules, allows easy identification of clusters of modules and provides clear facets of modules corresponding to the MATCH protocols. In that respect COPS works better than both standard MDS and clustering.\",\"PeriodicalId\":93139,\"journal\":{\"name\":\"Psych\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psych\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/psych5020020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych5020020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了针对从业者的集群优化邻近缩放(COPS),以及关于相应R包COP使用的教程。COPS是多维缩放(MDS)的一种变体,其目的是提供聚类配置,同时仍然忠实地表示多元相异性。它包含了最流行的MDS版本作为特殊情况。我们用临床心理学的数据说明了该方法和包的思想、用途、灵活性和多功能性,这些数据说明了临床医生如何在野外使用儿童模块化治疗方法(MATCH)的模块。我们在原始空间中用基于密度的分层聚类和用支持向量机进行面对面分析来补充COPS分析。我们发现,使用COPS进行缩放可以提供模块的合理和深入的空间排列,允许轻松识别模块集群,并提供与MATCH协议相对应的模块的清晰方面。在这方面,COPS比标准MDS和集群都工作得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COPS in Action: Exploring Structure in the Usage of the Youth Psychotherapy MATCH
This article is an introduction to Cluster Optimized Proximity Scaling (COPS) aimed at practitioners, as well as a tutorial on the usage of the corresponding R package cops. COPS is a variant of multidimensional scaling (MDS) that aims at providing a clustered configuration while still representing multivariate dissimilarities faithfully. It subsumes most popular MDS versions as special cases. We illustrate the ideas, use, flexibility and versatility of the method and the package with data from clinical psychology on how modules of the Modular Approach to Therapy for Children (MATCH) are used by clinicians in the wild. We supplement the COPS analyses with density-based hierarchical clustering in the original space and faceting with support vector machines. We find that scaling with COPS gives a sensible and insightful spatial arrangement of the modules, allows easy identification of clusters of modules and provides clear facets of modules corresponding to the MATCH protocols. In that respect COPS works better than both standard MDS and clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Robust Indicator Mean-Based Method for Estimating Generalizability Theory Absolute Error and Related Dependability Indices within Structural Equation Modeling Frameworks Qualitative Pilot Interventions for the Enhancement of Mental Health Support in Doctoral Students Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis The IADC Grief Questionnaire as a Brief Measure for Complicated Grief in Clinical Practice and Research: A Preliminary Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1