{"title":"Gafchromic的剂量反应™ EBT‐XD薄膜治疗质子","authors":"Fada Guan, Xiaochun Wang, Ming Yang, Emily Draeger, Dae Han, Kiminori Iga, Fanqing Guo, Luis Perles, Yuting Li, Narayan Sahoo, Radhe Mohan, Zhe Chen","doi":"10.1002/pro6.1187","DOIUrl":null,"url":null,"abstract":"<p><p>EBT-XD model of Gafchromic<sup>™</sup> films has a broader optimal dynamic dose range, up to 40 Gy, compared to its predecessor models. This characteristic has made EBT-XD films suitable for high-dose applications such as stereotactic body radiotherapy and stereotactic radiosurgery, as well as ultra-high dose rate FLASH radiotherapy. The purpose of the current study was to characterize the dependence of EBT-XD film response on linear energy transfer (LET) and dose rate of therapeutic protons from a synchrotron. A clinical spot-scanning proton beam was used to study LET dependence at three dose-averaged LET (LET<sub>d</sub>) values of 1.0 keV/µm, 3.6 keV/µm, and 7.6 keV/µm. A research proton beamline was used to study dose rate dependence at 150 Gy/second in the FLASH mode and 0.3 Gy/second in the non-FLASH mode. Film response data from LET<sub>d</sub> values of 0.9 keV/µm and 9.0 keV/µm of the proton FLASH beam were also compared. Film response data from a clinical 6 MV photon beam were used as a reference. Both gray value method and optical density (OD) method were used in film calibration. Calibration results using a specific OD calculation method and a generic OD calculation method were compared. The four-parameter NIH Rodbard function and three-parameter rational function were compared in fitting the calibration curves. Experimental results showed that the response of EBT-XD film is proton LET dependent but independent of dose rate. Goodness-of-fit analysis showed that using the NIH Rodbard function is superior for both protons and photons. Using the \"specific OD + NIH Rodbard function\" method for EBT-XD film calibration is recommended.</p>","PeriodicalId":32406,"journal":{"name":"Precision Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586355/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dosimetric response of Gafchromic<sup>™</sup> EBT-XD film to therapeutic protons.\",\"authors\":\"Fada Guan, Xiaochun Wang, Ming Yang, Emily Draeger, Dae Han, Kiminori Iga, Fanqing Guo, Luis Perles, Yuting Li, Narayan Sahoo, Radhe Mohan, Zhe Chen\",\"doi\":\"10.1002/pro6.1187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>EBT-XD model of Gafchromic<sup>™</sup> films has a broader optimal dynamic dose range, up to 40 Gy, compared to its predecessor models. This characteristic has made EBT-XD films suitable for high-dose applications such as stereotactic body radiotherapy and stereotactic radiosurgery, as well as ultra-high dose rate FLASH radiotherapy. The purpose of the current study was to characterize the dependence of EBT-XD film response on linear energy transfer (LET) and dose rate of therapeutic protons from a synchrotron. A clinical spot-scanning proton beam was used to study LET dependence at three dose-averaged LET (LET<sub>d</sub>) values of 1.0 keV/µm, 3.6 keV/µm, and 7.6 keV/µm. A research proton beamline was used to study dose rate dependence at 150 Gy/second in the FLASH mode and 0.3 Gy/second in the non-FLASH mode. Film response data from LET<sub>d</sub> values of 0.9 keV/µm and 9.0 keV/µm of the proton FLASH beam were also compared. Film response data from a clinical 6 MV photon beam were used as a reference. Both gray value method and optical density (OD) method were used in film calibration. Calibration results using a specific OD calculation method and a generic OD calculation method were compared. The four-parameter NIH Rodbard function and three-parameter rational function were compared in fitting the calibration curves. Experimental results showed that the response of EBT-XD film is proton LET dependent but independent of dose rate. Goodness-of-fit analysis showed that using the NIH Rodbard function is superior for both protons and photons. Using the \\\"specific OD + NIH Rodbard function\\\" method for EBT-XD film calibration is recommended.</p>\",\"PeriodicalId\":32406,\"journal\":{\"name\":\"Precision Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586355/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pro6.1187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pro6.1187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Dosimetric response of Gafchromic™ EBT-XD film to therapeutic protons.
EBT-XD model of Gafchromic™ films has a broader optimal dynamic dose range, up to 40 Gy, compared to its predecessor models. This characteristic has made EBT-XD films suitable for high-dose applications such as stereotactic body radiotherapy and stereotactic radiosurgery, as well as ultra-high dose rate FLASH radiotherapy. The purpose of the current study was to characterize the dependence of EBT-XD film response on linear energy transfer (LET) and dose rate of therapeutic protons from a synchrotron. A clinical spot-scanning proton beam was used to study LET dependence at three dose-averaged LET (LETd) values of 1.0 keV/µm, 3.6 keV/µm, and 7.6 keV/µm. A research proton beamline was used to study dose rate dependence at 150 Gy/second in the FLASH mode and 0.3 Gy/second in the non-FLASH mode. Film response data from LETd values of 0.9 keV/µm and 9.0 keV/µm of the proton FLASH beam were also compared. Film response data from a clinical 6 MV photon beam were used as a reference. Both gray value method and optical density (OD) method were used in film calibration. Calibration results using a specific OD calculation method and a generic OD calculation method were compared. The four-parameter NIH Rodbard function and three-parameter rational function were compared in fitting the calibration curves. Experimental results showed that the response of EBT-XD film is proton LET dependent but independent of dose rate. Goodness-of-fit analysis showed that using the NIH Rodbard function is superior for both protons and photons. Using the "specific OD + NIH Rodbard function" method for EBT-XD film calibration is recommended.