二维层状拓扑半金属薄膜的大面积制备及其新兴应用

IF 7.7 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Advances in Physics: X Pub Date : 2022-02-22 DOI:10.1080/23746149.2022.2034529
Wenzhuo Zhuang, Zhong X. Chen, Xuefeng Wang
{"title":"二维层状拓扑半金属薄膜的大面积制备及其新兴应用","authors":"Wenzhuo Zhuang, Zhong X. Chen, Xuefeng Wang","doi":"10.1080/23746149.2022.2034529","DOIUrl":null,"url":null,"abstract":"ABSTRACT Topological semimetals represent a new class of topological materials, which are highly desirable for both physics frontier and electronics applications owing to their nontrivial band structures and topologically protected surface states. The large-area fabrication of high-quality topological semimetal films is the prerequisite step to realize their practical applications. Its progress has located in its infant period. In this mini-review, we summarize several typical techniques for the fabrication of large-area 2D layered topological semimetal films. The recent progress in these large-area films for electronics, optoelectronics, terahertz, and spintronics applications is briefly reviewed. It is anticipated that with the rapid development of scalable, reliable, and low-cost production techniques and improved functional realization, large-area 2D layered topological semimetals would find the wide commercial applications in electronics, energy and beyond. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Large-area fabrication of 2D layered topological semimetal films and emerging applications\",\"authors\":\"Wenzhuo Zhuang, Zhong X. Chen, Xuefeng Wang\",\"doi\":\"10.1080/23746149.2022.2034529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Topological semimetals represent a new class of topological materials, which are highly desirable for both physics frontier and electronics applications owing to their nontrivial band structures and topologically protected surface states. The large-area fabrication of high-quality topological semimetal films is the prerequisite step to realize their practical applications. Its progress has located in its infant period. In this mini-review, we summarize several typical techniques for the fabrication of large-area 2D layered topological semimetal films. The recent progress in these large-area films for electronics, optoelectronics, terahertz, and spintronics applications is briefly reviewed. It is anticipated that with the rapid development of scalable, reliable, and low-cost production techniques and improved functional realization, large-area 2D layered topological semimetals would find the wide commercial applications in electronics, energy and beyond. Graphical Abstract\",\"PeriodicalId\":7374,\"journal\":{\"name\":\"Advances in Physics: X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics: X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/23746149.2022.2034529\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2022.2034529","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

拓扑半金属是一类新的拓扑材料,由于其非平凡的能带结构和拓扑保护的表面态,在物理前沿和电子学应用中都非常受欢迎。大面积制备高质量拓扑半金属膜是实现其实际应用的前提步骤。它的进步处于萌芽阶段。在这篇小综述中,我们总结了制备大面积二维层状拓扑半金属膜的几种典型技术。简要介绍了这些大面积薄膜在电子、光电子、太赫兹和自旋电子学应用方面的最新进展。预计随着可扩展、可靠、低成本生产技术的快速发展和功能实现的改进,大面积二维层状拓扑半金属将在电子、能源等领域获得广泛的商业应用。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-area fabrication of 2D layered topological semimetal films and emerging applications
ABSTRACT Topological semimetals represent a new class of topological materials, which are highly desirable for both physics frontier and electronics applications owing to their nontrivial band structures and topologically protected surface states. The large-area fabrication of high-quality topological semimetal films is the prerequisite step to realize their practical applications. Its progress has located in its infant period. In this mini-review, we summarize several typical techniques for the fabrication of large-area 2D layered topological semimetal films. The recent progress in these large-area films for electronics, optoelectronics, terahertz, and spintronics applications is briefly reviewed. It is anticipated that with the rapid development of scalable, reliable, and low-cost production techniques and improved functional realization, large-area 2D layered topological semimetals would find the wide commercial applications in electronics, energy and beyond. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Physics: X
Advances in Physics: X Physics and Astronomy-General Physics and Astronomy
CiteScore
13.60
自引率
0.00%
发文量
37
审稿时长
13 weeks
期刊介绍: Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including: Chemistry Materials Science Engineering Biology Medicine
期刊最新文献
The Maxwell’s equations for a mechano-driven media system (MEs-f-MDMS) Probing excitons with time-resolved momentum microscopy Pore-scale viscous fingering as a mechanism for pattern formation – a historical overview, application, and the ways of controlling it Orbital angular momentum of Bloch electrons: equilibrium formulation, magneto-electric phenomena, and the orbital Hall effect Multiscale modelling of biopolymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1