高闭孔含量三聚氰胺甲醛硬质泡沫塑料的制备及性能

IF 1.3 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Cellular Polymers Pub Date : 2021-05-17 DOI:10.1177/02624893211017130
Chunhui Li, Haihong Ma, Cong Song, Zhengfa Zhou, Weibing Xu, Qiusheng Song, F. Ren
{"title":"高闭孔含量三聚氰胺甲醛硬质泡沫塑料的制备及性能","authors":"Chunhui Li, Haihong Ma, Cong Song, Zhengfa Zhou, Weibing Xu, Qiusheng Song, F. Ren","doi":"10.1177/02624893211017130","DOIUrl":null,"url":null,"abstract":"Melamine-formaldehyde (MF)rigid foams with high closed cell content were prepared via oven heating process, using MF prepolymer prepared from melamine and paraformaldehyde as a matrix, cyclohexane as the foaming agent, dimethyl silicon oil as the foam stabilizers, hydrochloric acid as the catalyst. The effect of MF prepolymer viscosity, foaming temperature, amount of catalyst on morphology, closed cell content, apparent density, water absorption and compressive strength of MF rigid foams were systematically studied. The optimized foaming conditions are as follows: the viscosity of MF prepolymer ranges from 35 Pa·s to 45 Pa·s, the foaming temperature is 125°C and the content of the catalyst is 0.65 wt%. The as-prepared MF foams showed the best comprehensive performance with closed cell content of 83.5%, apparent density of 62 kg·m−3, water absorption of 12.0%, compressive strength of 292kPa, thermal conductivity of 0.033 W m−1 K−1 and limiting oxygen index (LOI) of 36%. Compared to conventional organic foams, MF rigid foams possess low water absorption, excellent thermal insulation and flame retardancy due to high closed cell content, and can be expected to be used as thermal insulation material for building exterior walls.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/02624893211017130","citationCount":"4","resultStr":"{\"title\":\"Preparation and performance of melamine-formaldehyde rigid foams with high closed cell content\",\"authors\":\"Chunhui Li, Haihong Ma, Cong Song, Zhengfa Zhou, Weibing Xu, Qiusheng Song, F. Ren\",\"doi\":\"10.1177/02624893211017130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Melamine-formaldehyde (MF)rigid foams with high closed cell content were prepared via oven heating process, using MF prepolymer prepared from melamine and paraformaldehyde as a matrix, cyclohexane as the foaming agent, dimethyl silicon oil as the foam stabilizers, hydrochloric acid as the catalyst. The effect of MF prepolymer viscosity, foaming temperature, amount of catalyst on morphology, closed cell content, apparent density, water absorption and compressive strength of MF rigid foams were systematically studied. The optimized foaming conditions are as follows: the viscosity of MF prepolymer ranges from 35 Pa·s to 45 Pa·s, the foaming temperature is 125°C and the content of the catalyst is 0.65 wt%. The as-prepared MF foams showed the best comprehensive performance with closed cell content of 83.5%, apparent density of 62 kg·m−3, water absorption of 12.0%, compressive strength of 292kPa, thermal conductivity of 0.033 W m−1 K−1 and limiting oxygen index (LOI) of 36%. Compared to conventional organic foams, MF rigid foams possess low water absorption, excellent thermal insulation and flame retardancy due to high closed cell content, and can be expected to be used as thermal insulation material for building exterior walls.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/02624893211017130\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893211017130\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893211017130","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

摘要

以三聚氰胺和多聚甲醛制备的三聚氰胺预聚物为基体,环己烷为发泡剂,二甲基硅油为泡沫稳定剂,盐酸为催化剂,采用烘箱加热法制备了高闭孔含量的三聚氰胺甲醛(MF)硬质泡沫。系统研究了MF预聚物粘度、发泡温度、催化剂用量对MF硬质泡沫的形态、闭孔含量、表观密度、吸水率和抗压强度的影响。优化的发泡条件为:MF预聚物的粘度在35Pa·s至45Pa·s之间,发泡温度为125°C,催化剂含量为0.65wt%。所制备的MF泡沫具有最佳的综合性能,闭孔含量为83.5%,表观密度为62 kg·m−3,吸水率为12.0%,抗压强度为292kPa,导热系数为0.033 W m−1 K−1,极限氧指数为36%。与传统的有机泡沫相比,MF硬质泡沫由于闭孔含量高,具有低吸水性、优异的隔热性和阻燃性,有望用作建筑外墙的隔热材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and performance of melamine-formaldehyde rigid foams with high closed cell content
Melamine-formaldehyde (MF)rigid foams with high closed cell content were prepared via oven heating process, using MF prepolymer prepared from melamine and paraformaldehyde as a matrix, cyclohexane as the foaming agent, dimethyl silicon oil as the foam stabilizers, hydrochloric acid as the catalyst. The effect of MF prepolymer viscosity, foaming temperature, amount of catalyst on morphology, closed cell content, apparent density, water absorption and compressive strength of MF rigid foams were systematically studied. The optimized foaming conditions are as follows: the viscosity of MF prepolymer ranges from 35 Pa·s to 45 Pa·s, the foaming temperature is 125°C and the content of the catalyst is 0.65 wt%. The as-prepared MF foams showed the best comprehensive performance with closed cell content of 83.5%, apparent density of 62 kg·m−3, water absorption of 12.0%, compressive strength of 292kPa, thermal conductivity of 0.033 W m−1 K−1 and limiting oxygen index (LOI) of 36%. Compared to conventional organic foams, MF rigid foams possess low water absorption, excellent thermal insulation and flame retardancy due to high closed cell content, and can be expected to be used as thermal insulation material for building exterior walls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Polymers
Cellular Polymers 工程技术-材料科学:生物材料
CiteScore
3.10
自引率
0.00%
发文量
9
审稿时长
3 months
期刊介绍: Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution. Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included. Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.
期刊最新文献
The impact performance of density-graded polyurea elastomeric foams CONFERENCES AND SEMINARS ISOPA’s New Role PATENTS ABSTRACTS Experiments and Modelling of the Expansion of Crosslinked Polyethylene Foams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1