Queen Arista Rosmania Putri Sumarsono, A. Munawir, Harimurti
{"title":"地震荷载作用下嵌梁排单桩与体积桩模型的对比分析","authors":"Queen Arista Rosmania Putri Sumarsono, A. Munawir, Harimurti","doi":"10.2478/sgem-2022-0027","DOIUrl":null,"url":null,"abstract":"Abstract Indonesia is located between the Eurasian, Pacific, Philippines, and Indo-Australian plates. Various tectonic processes in the world and collisions between large plates and several small plates trigger many earthquakes in Indonesia. This study aimed to evaluate the response of bored piles in the Auditorium Building of Brawijaya University toward seismic loads through analytical and numerical approaches based on finite elements with 2D (embedded beam row) and 3D (volume pile) modeling, where the analysis approach of pile deformation and lateral resistance with numerical methods will depend on idealization of the model used. In addition, the lateral resistance was compared based on combination lateral loads, pile stiffness, and soil stiffness when the values were different. The 2D finite element analysis reduces lateral resistance but overestimated the deflection on the pile surface. This is because in the 2D finite element modeling with an embedded beam row that the friction factor represented by the spring can reduces the stiffness and the pile–soil is tangent, so that there is no slipping against each other. In addition, the 3D finite element analysis with volume pile modeling increases soil stiffness at greater depths and the friction factor (interface) can improve the interaction between the soil and pile.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"45 1","pages":"28 - 40"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Single Pile with Embedded Beam Row and Volume Pile Modeling under Seismic Load\",\"authors\":\"Queen Arista Rosmania Putri Sumarsono, A. Munawir, Harimurti\",\"doi\":\"10.2478/sgem-2022-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Indonesia is located between the Eurasian, Pacific, Philippines, and Indo-Australian plates. Various tectonic processes in the world and collisions between large plates and several small plates trigger many earthquakes in Indonesia. This study aimed to evaluate the response of bored piles in the Auditorium Building of Brawijaya University toward seismic loads through analytical and numerical approaches based on finite elements with 2D (embedded beam row) and 3D (volume pile) modeling, where the analysis approach of pile deformation and lateral resistance with numerical methods will depend on idealization of the model used. In addition, the lateral resistance was compared based on combination lateral loads, pile stiffness, and soil stiffness when the values were different. The 2D finite element analysis reduces lateral resistance but overestimated the deflection on the pile surface. This is because in the 2D finite element modeling with an embedded beam row that the friction factor represented by the spring can reduces the stiffness and the pile–soil is tangent, so that there is no slipping against each other. In addition, the 3D finite element analysis with volume pile modeling increases soil stiffness at greater depths and the friction factor (interface) can improve the interaction between the soil and pile.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":\"45 1\",\"pages\":\"28 - 40\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2022-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2022-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Comparative Analysis of Single Pile with Embedded Beam Row and Volume Pile Modeling under Seismic Load
Abstract Indonesia is located between the Eurasian, Pacific, Philippines, and Indo-Australian plates. Various tectonic processes in the world and collisions between large plates and several small plates trigger many earthquakes in Indonesia. This study aimed to evaluate the response of bored piles in the Auditorium Building of Brawijaya University toward seismic loads through analytical and numerical approaches based on finite elements with 2D (embedded beam row) and 3D (volume pile) modeling, where the analysis approach of pile deformation and lateral resistance with numerical methods will depend on idealization of the model used. In addition, the lateral resistance was compared based on combination lateral loads, pile stiffness, and soil stiffness when the values were different. The 2D finite element analysis reduces lateral resistance but overestimated the deflection on the pile surface. This is because in the 2D finite element modeling with an embedded beam row that the friction factor represented by the spring can reduces the stiffness and the pile–soil is tangent, so that there is no slipping against each other. In addition, the 3D finite element analysis with volume pile modeling increases soil stiffness at greater depths and the friction factor (interface) can improve the interaction between the soil and pile.
期刊介绍:
An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories