Y. Tu, Tongfang Wang, Rongjiang Wen, Jie Cao, M. Fang, Chao Wang, G. Sas, L. Elfgren
{"title":"地质聚合物吸附放射性离子的分子动力学研究","authors":"Y. Tu, Tongfang Wang, Rongjiang Wen, Jie Cao, M. Fang, Chao Wang, G. Sas, L. Elfgren","doi":"10.1680/jadcr.22.00085","DOIUrl":null,"url":null,"abstract":"The construction of nuclear power plants necessitates careful consideration of the discharge and fixation of nuclear waste. Geopolymers are new cement-based materials (CBMs) with three-dimensional cage-like structures that enable effective nuclear waste fixation. In this work, the adsorption of radioactive caesium and strontium ions by sodium aluminosilicate hydrate (NASH) gel, the main component of geopolymers, was investigated using molecular dynamics simulations to obtain nanoscale insights into the ions’ interactions with the gel. The formation of strong ion–oxygen bonds allowed both ions to be effectively adsorbed on the NASH surface, but the adsorption ratio of strontium ions (17.2%) was slightly lower than that of caesium ions (21.0%). Because strontium ions are divalent, they can form stronger electrostatic interactions with water molecules and chloride ions, which hinders their approach to the interface. For the same reason, the diffusion coefficient of strontium ions in solution is lower than that of caesium ions. These results provide new insights into the nuclear waste fixation capacity of NASH gel and guidance for the design of new CBMs for radioactive waste disposal.","PeriodicalId":7299,"journal":{"name":"Advances in Cement Research","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics study on the adsorption of radioactive ions by geopolymers\",\"authors\":\"Y. Tu, Tongfang Wang, Rongjiang Wen, Jie Cao, M. Fang, Chao Wang, G. Sas, L. Elfgren\",\"doi\":\"10.1680/jadcr.22.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction of nuclear power plants necessitates careful consideration of the discharge and fixation of nuclear waste. Geopolymers are new cement-based materials (CBMs) with three-dimensional cage-like structures that enable effective nuclear waste fixation. In this work, the adsorption of radioactive caesium and strontium ions by sodium aluminosilicate hydrate (NASH) gel, the main component of geopolymers, was investigated using molecular dynamics simulations to obtain nanoscale insights into the ions’ interactions with the gel. The formation of strong ion–oxygen bonds allowed both ions to be effectively adsorbed on the NASH surface, but the adsorption ratio of strontium ions (17.2%) was slightly lower than that of caesium ions (21.0%). Because strontium ions are divalent, they can form stronger electrostatic interactions with water molecules and chloride ions, which hinders their approach to the interface. For the same reason, the diffusion coefficient of strontium ions in solution is lower than that of caesium ions. These results provide new insights into the nuclear waste fixation capacity of NASH gel and guidance for the design of new CBMs for radioactive waste disposal.\",\"PeriodicalId\":7299,\"journal\":{\"name\":\"Advances in Cement Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Cement Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jadcr.22.00085\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Cement Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.22.00085","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Molecular dynamics study on the adsorption of radioactive ions by geopolymers
The construction of nuclear power plants necessitates careful consideration of the discharge and fixation of nuclear waste. Geopolymers are new cement-based materials (CBMs) with three-dimensional cage-like structures that enable effective nuclear waste fixation. In this work, the adsorption of radioactive caesium and strontium ions by sodium aluminosilicate hydrate (NASH) gel, the main component of geopolymers, was investigated using molecular dynamics simulations to obtain nanoscale insights into the ions’ interactions with the gel. The formation of strong ion–oxygen bonds allowed both ions to be effectively adsorbed on the NASH surface, but the adsorption ratio of strontium ions (17.2%) was slightly lower than that of caesium ions (21.0%). Because strontium ions are divalent, they can form stronger electrostatic interactions with water molecules and chloride ions, which hinders their approach to the interface. For the same reason, the diffusion coefficient of strontium ions in solution is lower than that of caesium ions. These results provide new insights into the nuclear waste fixation capacity of NASH gel and guidance for the design of new CBMs for radioactive waste disposal.
期刊介绍:
Advances in Cement Research highlights the scientific ideas and innovations within the cutting-edge cement manufacture industry. It is a global journal with a scope encompassing cement manufacture and materials, properties and durability of cementitious materials and systems, hydration, interaction of cement with other materials, analysis and testing, special cements and applications.