Neelmani, R. Sarathi, H. Suematsu, Toshikatsu Tanaka
{"title":"纳米填料分散对环氧-氧化铝纳米复合材料电学和力学性能的影响","authors":"Neelmani, R. Sarathi, H. Suematsu, Toshikatsu Tanaka","doi":"10.18280/rcma.310405","DOIUrl":null,"url":null,"abstract":"The electrical and mechanical properties of the epoxy alumina nanocomposites depend on the uniform dispersion of the nanofiller in the epoxy matrix. Epoxy alumina nanocomposites were prepared using 1, 3, and 5 wt% of alumina nanofiller, and electrical and mechanical properties were analyzed using experimental and modelling studies. Water droplet initiated corona inception voltage (CIV) was identified using fluorescence fiber technique and by Ultra High Frequency (UHF) technique, under AC and DC voltages. The CIV formed due to water droplet have reduced drastically with increase in number of droplets and fluorescent fiber technique found to be more sensitive to identify water droplet initiated discharges. A micro mechanical model was proposed to analyse the combined effect of the interphase and agglomeration properties of the alumina nanoparticles on the tensile strength of epoxy alumina nanocomposites. Variation in ϕagg, Eagg, and E were analysed by adopting the non-parametric distribution of alumina nanoparticles and Young’s modulus increased with the increment in the alumina nanofiller dispersion level. The presence of aggregated particles exhibits a negative effect on the tensile properties of nanocomposites.","PeriodicalId":42458,"journal":{"name":"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Nanofiller Dispersion on Electrical and Mechanical Properties of Epoxy Alumina Nanocomposites\",\"authors\":\"Neelmani, R. Sarathi, H. Suematsu, Toshikatsu Tanaka\",\"doi\":\"10.18280/rcma.310405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrical and mechanical properties of the epoxy alumina nanocomposites depend on the uniform dispersion of the nanofiller in the epoxy matrix. Epoxy alumina nanocomposites were prepared using 1, 3, and 5 wt% of alumina nanofiller, and electrical and mechanical properties were analyzed using experimental and modelling studies. Water droplet initiated corona inception voltage (CIV) was identified using fluorescence fiber technique and by Ultra High Frequency (UHF) technique, under AC and DC voltages. The CIV formed due to water droplet have reduced drastically with increase in number of droplets and fluorescent fiber technique found to be more sensitive to identify water droplet initiated discharges. A micro mechanical model was proposed to analyse the combined effect of the interphase and agglomeration properties of the alumina nanoparticles on the tensile strength of epoxy alumina nanocomposites. Variation in ϕagg, Eagg, and E were analysed by adopting the non-parametric distribution of alumina nanoparticles and Young’s modulus increased with the increment in the alumina nanofiller dispersion level. The presence of aggregated particles exhibits a negative effect on the tensile properties of nanocomposites.\",\"PeriodicalId\":42458,\"journal\":{\"name\":\"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/rcma.310405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/rcma.310405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Influence of Nanofiller Dispersion on Electrical and Mechanical Properties of Epoxy Alumina Nanocomposites
The electrical and mechanical properties of the epoxy alumina nanocomposites depend on the uniform dispersion of the nanofiller in the epoxy matrix. Epoxy alumina nanocomposites were prepared using 1, 3, and 5 wt% of alumina nanofiller, and electrical and mechanical properties were analyzed using experimental and modelling studies. Water droplet initiated corona inception voltage (CIV) was identified using fluorescence fiber technique and by Ultra High Frequency (UHF) technique, under AC and DC voltages. The CIV formed due to water droplet have reduced drastically with increase in number of droplets and fluorescent fiber technique found to be more sensitive to identify water droplet initiated discharges. A micro mechanical model was proposed to analyse the combined effect of the interphase and agglomeration properties of the alumina nanoparticles on the tensile strength of epoxy alumina nanocomposites. Variation in ϕagg, Eagg, and E were analysed by adopting the non-parametric distribution of alumina nanoparticles and Young’s modulus increased with the increment in the alumina nanofiller dispersion level. The presence of aggregated particles exhibits a negative effect on the tensile properties of nanocomposites.