基于主动频率的音乐信息检索

IF 0.2 Q4 ENGINEERING, MULTIDISCIPLINARY Makara Journal of Technology Pub Date : 2021-09-01 DOI:10.7454/mst.v25i2.3977
Hardianto Wibowo, Wildan Suharso, Yufis Azhar, G. Wicaksono, A. E. Minarno, D. Harmanto
{"title":"基于主动频率的音乐信息检索","authors":"Hardianto Wibowo, Wildan Suharso, Yufis Azhar, G. Wicaksono, A. E. Minarno, D. Harmanto","doi":"10.7454/mst.v25i2.3977","DOIUrl":null,"url":null,"abstract":"Music is the art of combining frequencies. A balance of frequencies gives rise to a harmonious tone. Several features of music can be analyzed, and they include sociocultural background, lyrics, mood, tempo, rhythm, harmony, melody, timbre, and instrumentation. In this study, we use the frequency of instrumentation as a feature for classification because each instrument has a frequency range. To test this frequency range, we use five music genres and one music playing skill. The five genres are dangdut, electronic dance music (EDM), metal, pop/rock, and reggae. The music playing skill is acoustic. Active frequencies are tested using the k-nearest neighbor method, and the results serve as basis of the accuracy of music classification. The classification accuracy for EDM, metal, and acoustic is over 70%, whereas that for dangdut, pop/rock, and reggae is less than 60%. In sum, the accuracy of music classification is influenced by the similarities in the music instruments used and the tempo.","PeriodicalId":42980,"journal":{"name":"Makara Journal of Technology","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Music Information Retrieval Based on Active Frequency\",\"authors\":\"Hardianto Wibowo, Wildan Suharso, Yufis Azhar, G. Wicaksono, A. E. Minarno, D. Harmanto\",\"doi\":\"10.7454/mst.v25i2.3977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Music is the art of combining frequencies. A balance of frequencies gives rise to a harmonious tone. Several features of music can be analyzed, and they include sociocultural background, lyrics, mood, tempo, rhythm, harmony, melody, timbre, and instrumentation. In this study, we use the frequency of instrumentation as a feature for classification because each instrument has a frequency range. To test this frequency range, we use five music genres and one music playing skill. The five genres are dangdut, electronic dance music (EDM), metal, pop/rock, and reggae. The music playing skill is acoustic. Active frequencies are tested using the k-nearest neighbor method, and the results serve as basis of the accuracy of music classification. The classification accuracy for EDM, metal, and acoustic is over 70%, whereas that for dangdut, pop/rock, and reggae is less than 60%. In sum, the accuracy of music classification is influenced by the similarities in the music instruments used and the tempo.\",\"PeriodicalId\":42980,\"journal\":{\"name\":\"Makara Journal of Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Makara Journal of Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7454/mst.v25i2.3977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Makara Journal of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/mst.v25i2.3977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

音乐是组合频率的艺术。频率的平衡产生和谐的音调。音乐的几个特征可以分析,它们包括社会文化背景、歌词、情绪、节奏、节奏、和声、旋律、音色和乐器。在这项研究中,我们使用仪器的频率作为分类的特征,因为每个仪器都有一个频率范围。为了测试这个频率范围,我们使用了五种音乐流派和一种音乐演奏技巧。这五种流派分别是dangdut、电子舞曲(EDM)、金属、流行/摇滚和雷鬼。音乐演奏技巧是原声的。使用k近邻法对有源频率进行了测试,结果为音乐分类的准确性奠定了基础。EDM、金属和声学的分类准确率超过70%,而dangdut、流行/摇滚和雷鬼的分类准确度低于60%。总之,音乐分类的准确性受到所用乐器和节奏的相似性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Music Information Retrieval Based on Active Frequency
Music is the art of combining frequencies. A balance of frequencies gives rise to a harmonious tone. Several features of music can be analyzed, and they include sociocultural background, lyrics, mood, tempo, rhythm, harmony, melody, timbre, and instrumentation. In this study, we use the frequency of instrumentation as a feature for classification because each instrument has a frequency range. To test this frequency range, we use five music genres and one music playing skill. The five genres are dangdut, electronic dance music (EDM), metal, pop/rock, and reggae. The music playing skill is acoustic. Active frequencies are tested using the k-nearest neighbor method, and the results serve as basis of the accuracy of music classification. The classification accuracy for EDM, metal, and acoustic is over 70%, whereas that for dangdut, pop/rock, and reggae is less than 60%. In sum, the accuracy of music classification is influenced by the similarities in the music instruments used and the tempo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Makara Journal of Technology
Makara Journal of Technology ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
13
审稿时长
20 weeks
期刊最新文献
Optimization of the Building Envelope and Roof Shading to Reduce the Energy Consumption of College Low-Rise Buildings in Indonesia Briquette of Empty Fruit Bunch Fiber as an Alternative Substitution for Binderless Fuel Methods Heat Transfer Enhancement in Nanofluid Flows Augmented by Magnetic Flux Isolation and Characterization of Caffeine-Degrading Bacteria from Coffee Plantation Areas in Malaysia Effect of Lime Content, Curing Temperature, and Aging Condition on Low-Alkaline Concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1