Shota Kazano, Toshiko Osada, Satoshi Kobayashi, Ken Goto
{"title":"连续碳纤维增强热塑性聚酰亚胺复合材料树脂浸渍性能的实验与分析研究","authors":"Shota Kazano, Toshiko Osada, Satoshi Kobayashi, Ken Goto","doi":"10.1186/s40759-018-0039-3","DOIUrl":null,"url":null,"abstract":"<p>In molding of carbon fiber reinforced thermoplastics (CFRTP), resin impregnation behavior to fiber yarns is very important because higher viscosity of molten thermoplastics inhibites resin impregnation to the interspace among fibers. Resultant resin un-impregnation causes lower mechanical properties of CFRTP. The purpose of this study was to clarify the relation among molding method, molding conditions and resin impregnation to fiber yarns experimentally and analytically. In this study, CFRTPs using continuous carbon fiber yarn as a reinforcement and a thermoplastic polyimide which is excellent in heat resistance as a matrix resin were produced by Micro-Braiding, Film Stacking and Powder method. In addition resin impregnation was modeled based on Darcy’s law and continuity condition. As a result, analytical resin impregnation prediction showed good agreements with the experimental results in all the producing methods and molding conditions. In addition, the void content in the molded CFRP could be greatly reduced by pressurizing cooling.</p>","PeriodicalId":696,"journal":{"name":"Mechanics of Advanced Materials and Modern Processes","volume":"4 1","pages":""},"PeriodicalIF":4.0300,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40759-018-0039-3","citationCount":"10","resultStr":"{\"title\":\"Experimental and analytical investigation on resin impregnation behavior in continuous carbon fiber reinforced thermoplastic polyimide composites\",\"authors\":\"Shota Kazano, Toshiko Osada, Satoshi Kobayashi, Ken Goto\",\"doi\":\"10.1186/s40759-018-0039-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In molding of carbon fiber reinforced thermoplastics (CFRTP), resin impregnation behavior to fiber yarns is very important because higher viscosity of molten thermoplastics inhibites resin impregnation to the interspace among fibers. Resultant resin un-impregnation causes lower mechanical properties of CFRTP. The purpose of this study was to clarify the relation among molding method, molding conditions and resin impregnation to fiber yarns experimentally and analytically. In this study, CFRTPs using continuous carbon fiber yarn as a reinforcement and a thermoplastic polyimide which is excellent in heat resistance as a matrix resin were produced by Micro-Braiding, Film Stacking and Powder method. In addition resin impregnation was modeled based on Darcy’s law and continuity condition. As a result, analytical resin impregnation prediction showed good agreements with the experimental results in all the producing methods and molding conditions. In addition, the void content in the molded CFRP could be greatly reduced by pressurizing cooling.</p>\",\"PeriodicalId\":696,\"journal\":{\"name\":\"Mechanics of Advanced Materials and Modern Processes\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0300,\"publicationDate\":\"2018-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40759-018-0039-3\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Advanced Materials and Modern Processes\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40759-018-0039-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Advanced Materials and Modern Processes","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s40759-018-0039-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental and analytical investigation on resin impregnation behavior in continuous carbon fiber reinforced thermoplastic polyimide composites
In molding of carbon fiber reinforced thermoplastics (CFRTP), resin impregnation behavior to fiber yarns is very important because higher viscosity of molten thermoplastics inhibites resin impregnation to the interspace among fibers. Resultant resin un-impregnation causes lower mechanical properties of CFRTP. The purpose of this study was to clarify the relation among molding method, molding conditions and resin impregnation to fiber yarns experimentally and analytically. In this study, CFRTPs using continuous carbon fiber yarn as a reinforcement and a thermoplastic polyimide which is excellent in heat resistance as a matrix resin were produced by Micro-Braiding, Film Stacking and Powder method. In addition resin impregnation was modeled based on Darcy’s law and continuity condition. As a result, analytical resin impregnation prediction showed good agreements with the experimental results in all the producing methods and molding conditions. In addition, the void content in the molded CFRP could be greatly reduced by pressurizing cooling.