{"title":"对评估钢结构屈曲阻力的“通用方法”进行创新","authors":"D. Czepiżak","doi":"10.2478/sgem-2021-0022","DOIUrl":null,"url":null,"abstract":"Abstract Stability checking is an essential element of the dimensioning of steel frame structures. One of the stability checking methods allowed by EN 1993-1-1 is the so-called general method of assessing structural stability, based on buckling curves and relative structure slenderness λ¯op {\\bar \\lambda _{op}} usually determined through numerical analyses. But this method is not widely used because of the limited computing capabilities of the engineering programs dedicated to static load analyses and difficulties in interpreting the results of the computations. The commonly used computer programs enable one to determine the shape of buckling and critical load amplifier αcr, from which one cannot directly determine the risk of buckling of a real structure. This paper presents a modified and innovative approach to the general method of assessing structural stability, which uses only three parameters, that is, the type of cross section, cross-section strength utilisation and αcr, to determine a member’s/structure’s bearing capacity mobilisation from the stability condition. The problem solution is presented in the form of simple formulas and legible diagrams. Finally, synthetic conclusions are formulated.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Look at the ‘General Method’ of Assessing Buckling Resistance of Steel Structures\",\"authors\":\"D. Czepiżak\",\"doi\":\"10.2478/sgem-2021-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Stability checking is an essential element of the dimensioning of steel frame structures. One of the stability checking methods allowed by EN 1993-1-1 is the so-called general method of assessing structural stability, based on buckling curves and relative structure slenderness λ¯op {\\\\bar \\\\lambda _{op}} usually determined through numerical analyses. But this method is not widely used because of the limited computing capabilities of the engineering programs dedicated to static load analyses and difficulties in interpreting the results of the computations. The commonly used computer programs enable one to determine the shape of buckling and critical load amplifier αcr, from which one cannot directly determine the risk of buckling of a real structure. This paper presents a modified and innovative approach to the general method of assessing structural stability, which uses only three parameters, that is, the type of cross section, cross-section strength utilisation and αcr, to determine a member’s/structure’s bearing capacity mobilisation from the stability condition. The problem solution is presented in the form of simple formulas and legible diagrams. Finally, synthetic conclusions are formulated.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2021-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2021-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Innovative Look at the ‘General Method’ of Assessing Buckling Resistance of Steel Structures
Abstract Stability checking is an essential element of the dimensioning of steel frame structures. One of the stability checking methods allowed by EN 1993-1-1 is the so-called general method of assessing structural stability, based on buckling curves and relative structure slenderness λ¯op {\bar \lambda _{op}} usually determined through numerical analyses. But this method is not widely used because of the limited computing capabilities of the engineering programs dedicated to static load analyses and difficulties in interpreting the results of the computations. The commonly used computer programs enable one to determine the shape of buckling and critical load amplifier αcr, from which one cannot directly determine the risk of buckling of a real structure. This paper presents a modified and innovative approach to the general method of assessing structural stability, which uses only three parameters, that is, the type of cross section, cross-section strength utilisation and αcr, to determine a member’s/structure’s bearing capacity mobilisation from the stability condition. The problem solution is presented in the form of simple formulas and legible diagrams. Finally, synthetic conclusions are formulated.
期刊介绍:
An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories