基因表达的数学模型

IF 1.3 Q2 STATISTICS & PROBABILITY Probability Surveys Pub Date : 2019-01-01 DOI:10.1214/19-ps332
Philippe Robert
{"title":"基因表达的数学模型","authors":"Philippe Robert","doi":"10.1214/19-ps332","DOIUrl":null,"url":null,"abstract":"In this paper we analyze the equilibrium properties of a large class of stochastic processes describing the fundamental biological process within bacterial cells, {\\em the production process of proteins}. Stochastic models classically used in this context to describe the time evolution of the numbers of mRNAs and proteins are presented and discussed. An extension of these models, which includes elongation phases of mRNAs and proteins, is introduced. A convergence result to equilibrium for the process associated to the number of proteins and mRNAs is proved and a representation of this equilibrium as a functional of a Poisson process in an extended state space is obtained. Explicit expressions for the first two moments of the number of mRNAs and proteins at equilibrium are derived, generalizing some classical formulas. Approximations used in the biological literature for the equilibrium distribution of the number of proteins are discussed and investigated in the light of these results. Several convergence results for the distribution of the number of proteins at equilibrium are in particular obtained under different scaling assumptions.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Mathematical models of gene expression\",\"authors\":\"Philippe Robert\",\"doi\":\"10.1214/19-ps332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyze the equilibrium properties of a large class of stochastic processes describing the fundamental biological process within bacterial cells, {\\\\em the production process of proteins}. Stochastic models classically used in this context to describe the time evolution of the numbers of mRNAs and proteins are presented and discussed. An extension of these models, which includes elongation phases of mRNAs and proteins, is introduced. A convergence result to equilibrium for the process associated to the number of proteins and mRNAs is proved and a representation of this equilibrium as a functional of a Poisson process in an extended state space is obtained. Explicit expressions for the first two moments of the number of mRNAs and proteins at equilibrium are derived, generalizing some classical formulas. Approximations used in the biological literature for the equilibrium distribution of the number of proteins are discussed and investigated in the light of these results. Several convergence results for the distribution of the number of proteins at equilibrium are in particular obtained under different scaling assumptions.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/19-ps332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/19-ps332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们分析了一大类随机过程的平衡性质,这些随机过程描述了细菌细胞内的基本生物过程,即蛋白质的生产过程。本文提出并讨论了用于描述信使核糖核酸和蛋白质数量的时间演变的随机模型。介绍了这些模型的扩展,包括mRNA和蛋白质的延伸阶段。证明了与蛋白质和信使核糖核酸数量相关的过程的平衡收敛结果,并获得了这种平衡在扩展状态空间中作为泊松过程函数的表示。推导了平衡时mRNAs和蛋白质数量的前两个矩的显式表达式,推广了一些经典公式。根据这些结果,讨论和研究了生物学文献中用于蛋白质数量平衡分布的近似值。在不同的标度假设下,特别获得了平衡时蛋白质数量分布的几个收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical models of gene expression
In this paper we analyze the equilibrium properties of a large class of stochastic processes describing the fundamental biological process within bacterial cells, {\em the production process of proteins}. Stochastic models classically used in this context to describe the time evolution of the numbers of mRNAs and proteins are presented and discussed. An extension of these models, which includes elongation phases of mRNAs and proteins, is introduced. A convergence result to equilibrium for the process associated to the number of proteins and mRNAs is proved and a representation of this equilibrium as a functional of a Poisson process in an extended state space is obtained. Explicit expressions for the first two moments of the number of mRNAs and proteins at equilibrium are derived, generalizing some classical formulas. Approximations used in the biological literature for the equilibrium distribution of the number of proteins are discussed and investigated in the light of these results. Several convergence results for the distribution of the number of proteins at equilibrium are in particular obtained under different scaling assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
期刊最新文献
Probabilistic representations of fragmentation equations L2-small ball asymptotics for Gaussian random functions: A survey Models of random subtrees of a graph Numerical methods for backward stochastic differential equations: A survey From Markov processes to semimartingales
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1