无电极电阻率法研究碱性硫酸镁水泥早期水化行为及力学性能

IF 1.4 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Cement Research Pub Date : 2022-10-14 DOI:10.1680/jadcr.22.00031
Shu-hui Lei, Dongdong Zhou, Li Fang, Qiaozhen Yang, F. Cheng
{"title":"无电极电阻率法研究碱性硫酸镁水泥早期水化行为及力学性能","authors":"Shu-hui Lei, Dongdong Zhou, Li Fang, Qiaozhen Yang, F. Cheng","doi":"10.1680/jadcr.22.00031","DOIUrl":null,"url":null,"abstract":"The effect of early hydration behavior on the long-term performance of cement is profound, but its study is lacking. The early hydration behavior and mechanical properties of basic magnesium sulfate (BMS) cement were investigated by using electrodeless resistivity test combined with compressive strength measurement, XRD, SEM and Mercury intrusion porosimetry (MIP). As a result, the early hydration process of BMS cement can be clearly divided into three stages including induction period, acceleration period and deceleration period according to the resistivity variation curve. A linear correlation between the resistivity and setting time of BMS cement is established. Thus the initial setting time and final setting time of BMS cement can be estimated using feature point A (the time that the growth rate of resistivity starts rising) and feature point B (the time for the maximum growth rate of resistivity) on the differential curve of electrical resistivity, respectively. Moreover, a linear fitting equation between the resistivity (24 h) and compressive strength of BMS cement curing for 28 d is determined. The correlation coefficient is as high as 0.9979. Using the fitted linear equation, the long-term strength (28 d) of BMS cement can be precisely predicted by the measured resistivity (24 h). This study provides us a feasible, accurate and in situ method for understanding the early hydration behavior and quality monitoring of BMS cement.","PeriodicalId":7299,"journal":{"name":"Advances in Cement Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Early Hydration Behavior and Mechanical Properties of Basic Magnesium Sulfate Cement Using Electrodeless Resistivity Measurements\",\"authors\":\"Shu-hui Lei, Dongdong Zhou, Li Fang, Qiaozhen Yang, F. Cheng\",\"doi\":\"10.1680/jadcr.22.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of early hydration behavior on the long-term performance of cement is profound, but its study is lacking. The early hydration behavior and mechanical properties of basic magnesium sulfate (BMS) cement were investigated by using electrodeless resistivity test combined with compressive strength measurement, XRD, SEM and Mercury intrusion porosimetry (MIP). As a result, the early hydration process of BMS cement can be clearly divided into three stages including induction period, acceleration period and deceleration period according to the resistivity variation curve. A linear correlation between the resistivity and setting time of BMS cement is established. Thus the initial setting time and final setting time of BMS cement can be estimated using feature point A (the time that the growth rate of resistivity starts rising) and feature point B (the time for the maximum growth rate of resistivity) on the differential curve of electrical resistivity, respectively. Moreover, a linear fitting equation between the resistivity (24 h) and compressive strength of BMS cement curing for 28 d is determined. The correlation coefficient is as high as 0.9979. Using the fitted linear equation, the long-term strength (28 d) of BMS cement can be precisely predicted by the measured resistivity (24 h). This study provides us a feasible, accurate and in situ method for understanding the early hydration behavior and quality monitoring of BMS cement.\",\"PeriodicalId\":7299,\"journal\":{\"name\":\"Advances in Cement Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Cement Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jadcr.22.00031\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Cement Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.22.00031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

早期水化行为对水泥长期性能的影响是深远的,但缺乏研究。采用无电极电阻率试验,结合抗压强度测试、XRD、SEM和压汞孔隙率测试,研究了碱性硫酸镁(BMS)水泥的早期水化行为和力学性能。因此,根据电阻率变化曲线,BMS水泥的早期水化过程可以明确地分为诱导期、加速期和减速期三个阶段。建立了BMS水泥的电阻率与凝结时间之间的线性关系。因此,BMS水泥的初凝时间和终凝时间可以分别使用电阻率微分曲线上的特征点A(电阻率增长率开始上升的时间)和特征点B(电阻率最大增长率的时间)来估计。此外,还确定了BMS水泥养护28d的电阻率(24 h)与抗压强度之间的线性拟合方程。相关系数高达0.9979。使用拟合的线性方程,BMS水泥的长期强度(28d)可以通过测量的电阻率(24h)精确预测。本研究为我们了解BMS水泥的早期水化行为和质量监测提供了一种可行、准确、原位的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Early Hydration Behavior and Mechanical Properties of Basic Magnesium Sulfate Cement Using Electrodeless Resistivity Measurements
The effect of early hydration behavior on the long-term performance of cement is profound, but its study is lacking. The early hydration behavior and mechanical properties of basic magnesium sulfate (BMS) cement were investigated by using electrodeless resistivity test combined with compressive strength measurement, XRD, SEM and Mercury intrusion porosimetry (MIP). As a result, the early hydration process of BMS cement can be clearly divided into three stages including induction period, acceleration period and deceleration period according to the resistivity variation curve. A linear correlation between the resistivity and setting time of BMS cement is established. Thus the initial setting time and final setting time of BMS cement can be estimated using feature point A (the time that the growth rate of resistivity starts rising) and feature point B (the time for the maximum growth rate of resistivity) on the differential curve of electrical resistivity, respectively. Moreover, a linear fitting equation between the resistivity (24 h) and compressive strength of BMS cement curing for 28 d is determined. The correlation coefficient is as high as 0.9979. Using the fitted linear equation, the long-term strength (28 d) of BMS cement can be precisely predicted by the measured resistivity (24 h). This study provides us a feasible, accurate and in situ method for understanding the early hydration behavior and quality monitoring of BMS cement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Cement Research
Advances in Cement Research 工程技术-材料科学:综合
CiteScore
3.70
自引率
5.00%
发文量
56
审稿时长
3.2 months
期刊介绍: Advances in Cement Research highlights the scientific ideas and innovations within the cutting-edge cement manufacture industry. It is a global journal with a scope encompassing cement manufacture and materials, properties and durability of cementitious materials and systems, hydration, interaction of cement with other materials, analysis and testing, special cements and applications.
期刊最新文献
The regeneration of cement from completely recyclable mortar: effect of raw materials compositions Build-up formation in cement kiln preheater: qualitative and quantitative mineral characterization Effect of nano-silica@ chitosan phosphate ester on the mechanical properties and water resistance of magnesium oxychloride cement Application of biomineralization for enhancement of interfacial properties of rice husk ash blended concrete Strength characteristics of cement slurry in high geothermal tunnel environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1