Adam Pacheck, Steven D. James, G. Konidaris, H. Kress-Gazit
{"title":"具有学习抽象表示的反应式高级任务的自动编码和修复","authors":"Adam Pacheck, Steven D. James, G. Konidaris, H. Kress-Gazit","doi":"10.1177/02783649231167207","DOIUrl":null,"url":null,"abstract":"We present a framework for the automatic encoding and repair of high-level tasks. Given a set of skills a robot can perform, our approach first abstracts sensor data into symbols and then automatically encodes the robot’s capabilities in Linear Temporal Logic (LTL). Using this encoding, a user can specify reactive high-level tasks, for which we can automatically synthesize a strategy that executes on the robot, if the task is feasible. If a task is not feasible given the robot’s capabilities, we present two methods, one enumeration-based and one synthesis-based, for automatically suggesting additional skills for the robot or modifications to existing skills that would make the task feasible. We demonstrate our framework on a Baxter robot manipulating blocks on a table, a Baxter robot manipulating plates on a table, and a Kinova arm manipulating vials, with multiple sensor modalities, including raw images.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"263 - 288"},"PeriodicalIF":7.5000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic encoding and repair of reactive high-level tasks with learned abstract representations\",\"authors\":\"Adam Pacheck, Steven D. James, G. Konidaris, H. Kress-Gazit\",\"doi\":\"10.1177/02783649231167207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a framework for the automatic encoding and repair of high-level tasks. Given a set of skills a robot can perform, our approach first abstracts sensor data into symbols and then automatically encodes the robot’s capabilities in Linear Temporal Logic (LTL). Using this encoding, a user can specify reactive high-level tasks, for which we can automatically synthesize a strategy that executes on the robot, if the task is feasible. If a task is not feasible given the robot’s capabilities, we present two methods, one enumeration-based and one synthesis-based, for automatically suggesting additional skills for the robot or modifications to existing skills that would make the task feasible. We demonstrate our framework on a Baxter robot manipulating blocks on a table, a Baxter robot manipulating plates on a table, and a Kinova arm manipulating vials, with multiple sensor modalities, including raw images.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":\"42 1\",\"pages\":\"263 - 288\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649231167207\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649231167207","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Automatic encoding and repair of reactive high-level tasks with learned abstract representations
We present a framework for the automatic encoding and repair of high-level tasks. Given a set of skills a robot can perform, our approach first abstracts sensor data into symbols and then automatically encodes the robot’s capabilities in Linear Temporal Logic (LTL). Using this encoding, a user can specify reactive high-level tasks, for which we can automatically synthesize a strategy that executes on the robot, if the task is feasible. If a task is not feasible given the robot’s capabilities, we present two methods, one enumeration-based and one synthesis-based, for automatically suggesting additional skills for the robot or modifications to existing skills that would make the task feasible. We demonstrate our framework on a Baxter robot manipulating blocks on a table, a Baxter robot manipulating plates on a table, and a Kinova arm manipulating vials, with multiple sensor modalities, including raw images.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.