一种用户驱动的方法,用于使用研究产品在全国调查中实证评估项目重要性

IF 0.5 4区 数学 Q4 SOCIAL SCIENCES, MATHEMATICAL METHODS Journal of Official Statistics Pub Date : 2022-12-01 DOI:10.2478/jos-2022-0052
Ai Rene Ong, Robert Schultz, Sofi Sinozich, Brady T West, James Wagner, Jennifer Sinibaldi, John Finamore
{"title":"一种用户驱动的方法,用于使用研究产品在全国调查中实证评估项目重要性","authors":"Ai Rene Ong, Robert Schultz, Sofi Sinozich, Brady T West, James Wagner, Jennifer Sinibaldi, John Finamore","doi":"10.2478/jos-2022-0052","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale, nationally representative surveys serve many vital functions, but these surveys are often long and burdensome for respondents. Cutting survey length can help to reduce respondent burden and may improve data quality but removing items from these surveys is not a trivial matter. We propose a method to empirically assess item importance and associated burden in national surveys and guide this decision-making process using different research products produced from such surveys. This method is demonstrated using the Survey of Doctorate Recipients (SDR), a biennial survey administered to individuals with a Science, Engineering, and Health doctorate. We used three main sources of information on the SDR variables: 1) a bibliography of documents using the SDR data, 2) the SDR website that allows users to download summary data, and 3) web timing paradata and break-off rates. The bibliography was coded for SDR variable usage and citation counts. Putting this information together, we identified 35 unused items (17% of the survey) by any of these sources and found that the most burdensome items are highly important. We conclude with general recommendations for those hoping to employ similar methodologies in the future.</p>","PeriodicalId":51092,"journal":{"name":"Journal of Official Statistics","volume":"38 1","pages":"1235-1251"},"PeriodicalIF":0.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293792/pdf/","citationCount":"0","resultStr":"{\"title\":\"A User-Driven Method for Using Research Products to Empirically Assess Item Importance in National Surveys.\",\"authors\":\"Ai Rene Ong, Robert Schultz, Sofi Sinozich, Brady T West, James Wagner, Jennifer Sinibaldi, John Finamore\",\"doi\":\"10.2478/jos-2022-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large-scale, nationally representative surveys serve many vital functions, but these surveys are often long and burdensome for respondents. Cutting survey length can help to reduce respondent burden and may improve data quality but removing items from these surveys is not a trivial matter. We propose a method to empirically assess item importance and associated burden in national surveys and guide this decision-making process using different research products produced from such surveys. This method is demonstrated using the Survey of Doctorate Recipients (SDR), a biennial survey administered to individuals with a Science, Engineering, and Health doctorate. We used three main sources of information on the SDR variables: 1) a bibliography of documents using the SDR data, 2) the SDR website that allows users to download summary data, and 3) web timing paradata and break-off rates. The bibliography was coded for SDR variable usage and citation counts. Putting this information together, we identified 35 unused items (17% of the survey) by any of these sources and found that the most burdensome items are highly important. We conclude with general recommendations for those hoping to employ similar methodologies in the future.</p>\",\"PeriodicalId\":51092,\"journal\":{\"name\":\"Journal of Official Statistics\",\"volume\":\"38 1\",\"pages\":\"1235-1251\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293792/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Official Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/jos-2022-0052\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Official Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2022-0052","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要具有全国代表性的大规模调查具有许多重要功能,但这些调查对受访者来说可能是漫长而繁重的。缩短调查长度有助于减轻受访者负担,并可能提高数据质量,但从这些调查中删除项目并非小事。我们提出了一种在国家调查中实证评估项目重要性和相关负担的方法,并使用此类调查产生的不同研究产品来指导这一决策过程。这种方法是通过对博士学位获得者的调查(SDR)来证明的,这是一项针对拥有科学、工程和健康博士学位的个人的两年一次的调查。我们使用了关于SDR变量的三个主要信息来源:使用SDR数据作为项目使用和重要性衡量标准的文件目录,科学家和工程师统计数据系统的SDR数据表下载统计数据作为项目用途的额外衡量标准,以及网络计时paradata和中断率作为负担衡量标准。综合这些信息,我们确定了35个未使用的项目(占调查的17%),并发现最繁重的项目非常重要。最后,我们为那些希望在未来采用类似方法的人提出了一般性建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A User-Driven Method for Using Research Products to Empirically Assess Item Importance in National Surveys.

Large-scale, nationally representative surveys serve many vital functions, but these surveys are often long and burdensome for respondents. Cutting survey length can help to reduce respondent burden and may improve data quality but removing items from these surveys is not a trivial matter. We propose a method to empirically assess item importance and associated burden in national surveys and guide this decision-making process using different research products produced from such surveys. This method is demonstrated using the Survey of Doctorate Recipients (SDR), a biennial survey administered to individuals with a Science, Engineering, and Health doctorate. We used three main sources of information on the SDR variables: 1) a bibliography of documents using the SDR data, 2) the SDR website that allows users to download summary data, and 3) web timing paradata and break-off rates. The bibliography was coded for SDR variable usage and citation counts. Putting this information together, we identified 35 unused items (17% of the survey) by any of these sources and found that the most burdensome items are highly important. We conclude with general recommendations for those hoping to employ similar methodologies in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Official Statistics
Journal of Official Statistics STATISTICS & PROBABILITY-
CiteScore
1.90
自引率
9.10%
发文量
39
审稿时长
>12 weeks
期刊介绍: JOS is an international quarterly published by Statistics Sweden. We publish research articles in the area of survey and statistical methodology and policy matters facing national statistical offices and other producers of statistics. The intended readers are researchers or practicians at statistical agencies or in universities and private organizations dealing with problems which concern aspects of production of official statistics.
期刊最新文献
Reliable event rates for disease mapping. Application of Sampling Variance Smoothing Methods for Small Area Proportion Estimation Answering Current Challenges of and Changes in Producing Official Time Use Statistics Using the Data Collection Platform MOTUS Small Area with Multiply Imputed Survey Data Temporally Consistent Present Population from Mobile Network Signaling Data for Official Statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1