澳大利亚东南部墨累-达令盆地南部河流平原灌溉、气候和地下水开采变化造成的河流损失风险

IF 2.4 Q2 WATER RESOURCES Australasian Journal of Water Resources Pub Date : 2023-03-01 DOI:10.1080/13241583.2023.2181292
G. Walker
{"title":"澳大利亚东南部墨累-达令盆地南部河流平原灌溉、气候和地下水开采变化造成的河流损失风险","authors":"G. Walker","doi":"10.1080/13241583.2023.2181292","DOIUrl":null,"url":null,"abstract":"ABSTRACT The rivers of the south-eastern Murray-Darling Basin (MDB) and the associated irrigation areas of the southern riverine plain (SRP) in south-eastern Australia have undergone major hydrological changes over the last 30 years. These include a period of lower rainfall; a rebalance of surface water diversions between consumptive and environmental water uses under the MDB Basin Plan, improvements in water infrastructure; water trade out of the region; and falling groundwater levels. All these changes increase losses from streams to groundwater systems; potentially leading to the need for greater releases from dams to maintain baseflow in the major rivers. Baseflow is important for conveyance of water, water quality and baseflow-dependent ecosystems during dry periods. Hydrological changes in the SRP will reduce the streamflow by 2029–30 by an estimated 80 to 320 GL/yr. Further hydrological changes by 2029–30 will reduce the streamflow by another 50 GL/yr in the following decade. This is the first assessment of the cumulative stream impacts of the SRP and is relatively lower than previous assessments for single drivers. The current approach of mitigating unexpected losses is to increase conveyance loss budgets as required. This could be extended to mitigate the lower end of potential impacts; but further steps to reduce losses may be required towards the upper end. Further actions include a review of extraction limits for surface water and groundwater, trigger levels, and a greater shift towards conjunctive water management. Groundwater extraction, which has dominated impacts, is increasing from a relatively low proportion of the extraction limit in Goulburn-Murray Sedimentary Plain and shallow aquifers of the SRP. Over time, climate change will become more dominant as a driver. Most monitoring required to support mitigation already exists, but data is not collated or reported in a form relevant for stream impacts. Modelling also needs to be updated with reporting of more relevant outputs.","PeriodicalId":51870,"journal":{"name":"Australasian Journal of Water Resources","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Risk of stream loss from changing irrigation, climate and groundwater extraction on the southern riverine plain of the Murray-Darling Basin in south-eastern Australia\",\"authors\":\"G. Walker\",\"doi\":\"10.1080/13241583.2023.2181292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The rivers of the south-eastern Murray-Darling Basin (MDB) and the associated irrigation areas of the southern riverine plain (SRP) in south-eastern Australia have undergone major hydrological changes over the last 30 years. These include a period of lower rainfall; a rebalance of surface water diversions between consumptive and environmental water uses under the MDB Basin Plan, improvements in water infrastructure; water trade out of the region; and falling groundwater levels. All these changes increase losses from streams to groundwater systems; potentially leading to the need for greater releases from dams to maintain baseflow in the major rivers. Baseflow is important for conveyance of water, water quality and baseflow-dependent ecosystems during dry periods. Hydrological changes in the SRP will reduce the streamflow by 2029–30 by an estimated 80 to 320 GL/yr. Further hydrological changes by 2029–30 will reduce the streamflow by another 50 GL/yr in the following decade. This is the first assessment of the cumulative stream impacts of the SRP and is relatively lower than previous assessments for single drivers. The current approach of mitigating unexpected losses is to increase conveyance loss budgets as required. This could be extended to mitigate the lower end of potential impacts; but further steps to reduce losses may be required towards the upper end. Further actions include a review of extraction limits for surface water and groundwater, trigger levels, and a greater shift towards conjunctive water management. Groundwater extraction, which has dominated impacts, is increasing from a relatively low proportion of the extraction limit in Goulburn-Murray Sedimentary Plain and shallow aquifers of the SRP. Over time, climate change will become more dominant as a driver. Most monitoring required to support mitigation already exists, but data is not collated or reported in a form relevant for stream impacts. Modelling also needs to be updated with reporting of more relevant outputs.\",\"PeriodicalId\":51870,\"journal\":{\"name\":\"Australasian Journal of Water Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Journal of Water Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13241583.2023.2181292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Journal of Water Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13241583.2023.2181292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Risk of stream loss from changing irrigation, climate and groundwater extraction on the southern riverine plain of the Murray-Darling Basin in south-eastern Australia
ABSTRACT The rivers of the south-eastern Murray-Darling Basin (MDB) and the associated irrigation areas of the southern riverine plain (SRP) in south-eastern Australia have undergone major hydrological changes over the last 30 years. These include a period of lower rainfall; a rebalance of surface water diversions between consumptive and environmental water uses under the MDB Basin Plan, improvements in water infrastructure; water trade out of the region; and falling groundwater levels. All these changes increase losses from streams to groundwater systems; potentially leading to the need for greater releases from dams to maintain baseflow in the major rivers. Baseflow is important for conveyance of water, water quality and baseflow-dependent ecosystems during dry periods. Hydrological changes in the SRP will reduce the streamflow by 2029–30 by an estimated 80 to 320 GL/yr. Further hydrological changes by 2029–30 will reduce the streamflow by another 50 GL/yr in the following decade. This is the first assessment of the cumulative stream impacts of the SRP and is relatively lower than previous assessments for single drivers. The current approach of mitigating unexpected losses is to increase conveyance loss budgets as required. This could be extended to mitigate the lower end of potential impacts; but further steps to reduce losses may be required towards the upper end. Further actions include a review of extraction limits for surface water and groundwater, trigger levels, and a greater shift towards conjunctive water management. Groundwater extraction, which has dominated impacts, is increasing from a relatively low proportion of the extraction limit in Goulburn-Murray Sedimentary Plain and shallow aquifers of the SRP. Over time, climate change will become more dominant as a driver. Most monitoring required to support mitigation already exists, but data is not collated or reported in a form relevant for stream impacts. Modelling also needs to be updated with reporting of more relevant outputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
21.90%
发文量
25
期刊介绍: The Australasian Journal of Water Resources ( AJWR) is a multi-disciplinary regional journal dedicated to scholarship, professional practice and discussion on water resources planning, management and policy. Its primary geographic focus is on Australia, New Zealand and the Pacific Islands. Papers from outside this region will also be welcomed if they contribute to an understanding of water resources issues in the region. Such contributions could be due to innovations applicable to the Australasian water community, or where clear linkages between studies in other parts of the world are linked to important issues or water planning, management, development and policy challenges in Australasia. These could include papers on global issues where Australasian impacts are clearly identified.
期刊最新文献
Short-term water demand forecasting: a review Review of hydrological modelling in the Australian Alps: from rainfall-runoff to physically based models Risks in the current groundwater regulation approach in the Beetaloo region, Northern Territory, Australia Artificial Intelligence of Things (AIoT)-oriented framework for blockage assessment at cross-drainage hydraulic structures Comment on sustainable salinity management in ‘the three-infrastructures framework and water risks in the Murray-Darling Basin, Australia’ by Williams et al. (2022)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1