离心泵正停和反停瞬态特性的比较

IF 1.1 Q4 THERMODYNAMICS Frontiers in Heat and Mass Transfer Pub Date : 2022-08-11 DOI:10.5098/hmt.18.47
Sanping Li, Yu‐Liang Zhang, H. Lin, Jun-Jian Xiao, Li Zhang
{"title":"离心泵正停和反停瞬态特性的比较","authors":"Sanping Li, Yu‐Liang Zhang, H. Lin, Jun-Jian Xiao, Li Zhang","doi":"10.5098/hmt.18.47","DOIUrl":null,"url":null,"abstract":"Centrifugal pumps need to be stopped in the case of closing valve sometimes due to some specific application requirements. This paper presents a numerical simulation of the unsteady flow inside a low specific speed centrifugal pump during closed-valve forward and reverse stopping process. The study results show that the average internal pressure gradually decreases during stopping periods. At the same blade radius, the pressure on working surface is significantly higher than the suction surface. The pressure gradually increases from the impeller inlet to the outlet. The simulation fully shows the transient flow characteristics inside the centrifugal pump during forward and reverse stopping period.","PeriodicalId":46200,"journal":{"name":"Frontiers in Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPARISON OF TRANSIENT CHARACTERISTICS OF A CENTRIFUGAL PUMP DURING FORWARD AND REVERSE STOPPING PERIODS\",\"authors\":\"Sanping Li, Yu‐Liang Zhang, H. Lin, Jun-Jian Xiao, Li Zhang\",\"doi\":\"10.5098/hmt.18.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Centrifugal pumps need to be stopped in the case of closing valve sometimes due to some specific application requirements. This paper presents a numerical simulation of the unsteady flow inside a low specific speed centrifugal pump during closed-valve forward and reverse stopping process. The study results show that the average internal pressure gradually decreases during stopping periods. At the same blade radius, the pressure on working surface is significantly higher than the suction surface. The pressure gradually increases from the impeller inlet to the outlet. The simulation fully shows the transient flow characteristics inside the centrifugal pump during forward and reverse stopping period.\",\"PeriodicalId\":46200,\"journal\":{\"name\":\"Frontiers in Heat and Mass Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5098/hmt.18.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5098/hmt.18.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

离心泵在关闭阀门的情况下需要停止,有时由于某些特定的应用要求。本文对低比转速离心泵在闭阀正向和反向停止过程中的非定常流动进行了数值模拟。研究结果表明,在停车期间,平均内压逐渐减小。在相同的叶片半径下,工作面上的压力明显高于吸力面。从叶轮入口到出口,压力逐渐增加。仿真结果充分显示了离心泵在正停和反停期间的瞬态流动特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMPARISON OF TRANSIENT CHARACTERISTICS OF A CENTRIFUGAL PUMP DURING FORWARD AND REVERSE STOPPING PERIODS
Centrifugal pumps need to be stopped in the case of closing valve sometimes due to some specific application requirements. This paper presents a numerical simulation of the unsteady flow inside a low specific speed centrifugal pump during closed-valve forward and reverse stopping process. The study results show that the average internal pressure gradually decreases during stopping periods. At the same blade radius, the pressure on working surface is significantly higher than the suction surface. The pressure gradually increases from the impeller inlet to the outlet. The simulation fully shows the transient flow characteristics inside the centrifugal pump during forward and reverse stopping period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
61.10%
发文量
66
审稿时长
10 weeks
期刊介绍: Frontiers in Heat and Mass Transfer is a free-access and peer-reviewed online journal that provides a central vehicle for the exchange of basic ideas in heat and mass transfer between researchers and engineers around the globe. It disseminates information of permanent interest in the area of heat and mass transfer. Theory and fundamental research in heat and mass transfer, numerical simulations and algorithms, experimental techniques and measurements as applied to all kinds of current and emerging problems are welcome. Contributions to the journal consist of original research on heat and mass transfer in equipment, thermal systems, thermodynamic processes, nanotechnology, biotechnology, information technology, energy and power applications, as well as security and related topics.
期刊最新文献
Heat and Humidity Transport Analysis Inside a Special Underground Building HEAT TRANSFER ANALYSIS OF MHD CASSON FLUID FLOW BETWEEN TWO POROUS PLATES WITH DIFFERENT PERMEABILITY PERFORMANCE ANALYSIS OF AN ENERGY-EFFICIENT PCM-BASED ROOM COOLING SYSTEM COMPARISON OF TEMPERATURE, RADIATION RATE, HEAT LOSS, FURNACE AND THERMAL EFFICIENCIES OF DIFFERENT PLATES IN THE FBC COMBUSTION CHAMBER MATHEMATICAL ANALYSIS OF CONVECTIVE HEAT EXCHANGER FROM RENEWABLE SUN’S RADIATION THROUGH NANO-FLUID IN DIRECT ABSORPTION SOLAR COLLECTORS WITH THE PROCREATION OF ENTROPY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1