D. Sierag, J. Rest, G. Koole, R. V. D. Mei, B. Zwart
{"title":"呼吁在收入管理预测中进行探索性数据分析:以荷兰一家小型独立酒店为例","authors":"D. Sierag, J. Rest, G. Koole, R. V. D. Mei, B. Zwart","doi":"10.1504/IJRM.2017.084147","DOIUrl":null,"url":null,"abstract":"Using five years of data collected from a small and independent hotel this case study explores RMS data as a means to seek new insights into occupancy forecasting. The study provides empirical evidence on the random nature of group cancellations, an important but neglected aspect in hotel revenue management modelling. The empirical study also shows that in a local market context demand differs significantly per point of time during the day, in addition to seasonal monthly and weekly demand patterns. Moreover, the study presents evidence on the nonhomogeneous Poisson nature of the probability distribution that demand follows, a crucial characteristic for forecasting modelling that is generally assumed but not reported in the hotel forecasting literature. This implies that demand is more uncertain for smaller than for larger hotels. The paper concludes by drawing attention to the critical and often overlooked role of exploratory data analysis in hotel revenue management forecasting.","PeriodicalId":39519,"journal":{"name":"International Journal of Revenue Management","volume":"10 1","pages":"28-51"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJRM.2017.084147","citationCount":"8","resultStr":"{\"title\":\"A call for exploratory data analysis in revenue management forecasting: a case study of a small and independent hotel in The Netherlands\",\"authors\":\"D. Sierag, J. Rest, G. Koole, R. V. D. Mei, B. Zwart\",\"doi\":\"10.1504/IJRM.2017.084147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using five years of data collected from a small and independent hotel this case study explores RMS data as a means to seek new insights into occupancy forecasting. The study provides empirical evidence on the random nature of group cancellations, an important but neglected aspect in hotel revenue management modelling. The empirical study also shows that in a local market context demand differs significantly per point of time during the day, in addition to seasonal monthly and weekly demand patterns. Moreover, the study presents evidence on the nonhomogeneous Poisson nature of the probability distribution that demand follows, a crucial characteristic for forecasting modelling that is generally assumed but not reported in the hotel forecasting literature. This implies that demand is more uncertain for smaller than for larger hotels. The paper concludes by drawing attention to the critical and often overlooked role of exploratory data analysis in hotel revenue management forecasting.\",\"PeriodicalId\":39519,\"journal\":{\"name\":\"International Journal of Revenue Management\",\"volume\":\"10 1\",\"pages\":\"28-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJRM.2017.084147\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Revenue Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJRM.2017.084147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Revenue Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJRM.2017.084147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
A call for exploratory data analysis in revenue management forecasting: a case study of a small and independent hotel in The Netherlands
Using five years of data collected from a small and independent hotel this case study explores RMS data as a means to seek new insights into occupancy forecasting. The study provides empirical evidence on the random nature of group cancellations, an important but neglected aspect in hotel revenue management modelling. The empirical study also shows that in a local market context demand differs significantly per point of time during the day, in addition to seasonal monthly and weekly demand patterns. Moreover, the study presents evidence on the nonhomogeneous Poisson nature of the probability distribution that demand follows, a crucial characteristic for forecasting modelling that is generally assumed but not reported in the hotel forecasting literature. This implies that demand is more uncertain for smaller than for larger hotels. The paper concludes by drawing attention to the critical and often overlooked role of exploratory data analysis in hotel revenue management forecasting.
期刊介绍:
The IJRM is an interdisciplinary and refereed journal that provides authoritative sources of reference and an international forum in the field of revenue management. IJRM publishes well-written and academically rigorous manuscripts. Both theoretic development and applied research are welcome.