考虑机组清洁性的炼油厂换热器网络清洁调度策略

Q4 Chemical Engineering ASEAN Journal of Chemical Engineering Pub Date : 2020-06-29 DOI:10.22146/ajche.51880
Hairul Huda, R. Handogo, T. R. Biyanto, Wei Wu, Vincentius Surya Kurnia Adi
{"title":"考虑机组清洁性的炼油厂换热器网络清洁调度策略","authors":"Hairul Huda, R. Handogo, T. R. Biyanto, Wei Wu, Vincentius Surya Kurnia Adi","doi":"10.22146/ajche.51880","DOIUrl":null,"url":null,"abstract":"Heat exchanger networks (HENs) play an important role in the chemical industries. Unfortunately, fouling is inevitable in heat exchangers operation. Therefore, the optimal cleaning procedure is required to restore heat exchangers' performance periodically. A systematic cleaning scheduling strategy for the heat exchanger network in an oil refinery is proposed in this work. There are 11 operating heat exchangers in an oil refinery to be reviewed. Different cleaning decision scenarios based on the overall heat transfer coefficient are explored for optimal cleaning schedule performance. The daily number of exchangers available to be cleaned i.e., the unit cleanability, is investigated while minimizing the energy consumption and the additional heat requirement due to the offline heat exchanger under cleaning procedure. The HEN performance and the energy-saving from the cleaning procedures are benchmarked with the uncleaned HEN. The results indicate that the cleaning procedure significantly increases the HEN performance and simultaneously reduces the heat requirement if compared to the untreated HEN benchmark. The possible conflicting situation is discussed when some heat exchangers are waiting to be cleaned due to the unit cleanability restriction, which allows the overall heat transfer coefficient to be below the allowed limit. Therefore, nonconflicting cleaning scheduling is also addressed in this work by relaxing the unit cleanability limit. Furthermore, the optimal cleaning schedule is also suggested for user reference. In this work, the optimum cleaning schedule with minimum energy consumption and maximum energy saving could be achieved when cleaning decision limit is set at 40% decrease of overall heat transfer coefficient. In the contrast, the lowest number of cleaning procedures is associated with 90% decrease in the overall heat transfer coefficient as the cleaning decision limit.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":"20 1","pages":"31-48"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Oil Refinery Heat Exchanger Network Cleaning Scheduling Strategy with Unit Cleanability Consideration\",\"authors\":\"Hairul Huda, R. Handogo, T. R. Biyanto, Wei Wu, Vincentius Surya Kurnia Adi\",\"doi\":\"10.22146/ajche.51880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat exchanger networks (HENs) play an important role in the chemical industries. Unfortunately, fouling is inevitable in heat exchangers operation. Therefore, the optimal cleaning procedure is required to restore heat exchangers' performance periodically. A systematic cleaning scheduling strategy for the heat exchanger network in an oil refinery is proposed in this work. There are 11 operating heat exchangers in an oil refinery to be reviewed. Different cleaning decision scenarios based on the overall heat transfer coefficient are explored for optimal cleaning schedule performance. The daily number of exchangers available to be cleaned i.e., the unit cleanability, is investigated while minimizing the energy consumption and the additional heat requirement due to the offline heat exchanger under cleaning procedure. The HEN performance and the energy-saving from the cleaning procedures are benchmarked with the uncleaned HEN. The results indicate that the cleaning procedure significantly increases the HEN performance and simultaneously reduces the heat requirement if compared to the untreated HEN benchmark. The possible conflicting situation is discussed when some heat exchangers are waiting to be cleaned due to the unit cleanability restriction, which allows the overall heat transfer coefficient to be below the allowed limit. Therefore, nonconflicting cleaning scheduling is also addressed in this work by relaxing the unit cleanability limit. Furthermore, the optimal cleaning schedule is also suggested for user reference. In this work, the optimum cleaning schedule with minimum energy consumption and maximum energy saving could be achieved when cleaning decision limit is set at 40% decrease of overall heat transfer coefficient. In the contrast, the lowest number of cleaning procedures is associated with 90% decrease in the overall heat transfer coefficient as the cleaning decision limit.\",\"PeriodicalId\":8490,\"journal\":{\"name\":\"ASEAN Journal of Chemical Engineering\",\"volume\":\"20 1\",\"pages\":\"31-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEAN Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ajche.51880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ajche.51880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

摘要

换热器网络在化学工业中发挥着重要作用。不幸的是,在热交换器的运行中,结垢是不可避免的。因此,需要采用最佳清洁程序来定期恢复换热器的性能。针对炼油厂换热器网络,提出了一种系统的清洗调度策略。一家炼油厂有11台正在运行的热交换器有待审查。基于整体传热系数探索了不同的清洁决策场景,以获得最佳的清洁计划性能。研究了可供清洁的换热器的每日数量,即机组的可清洁性,同时最大限度地减少了能源消耗和由于离线换热器在清洁过程中产生的额外热量需求。HEN的性能和清洁程序的节能与未清洁的HEN进行了对比。结果表明,与未处理的HEN基准相比,清洁程序显著提高了HEN性能,同时降低了热量需求。讨论了一些热交换器由于机组可清洁性限制而等待清洁时可能出现的冲突情况,这使得总传热系数低于允许的极限。因此,在这项工作中,通过放宽机组可清洁性限制,也解决了不冲突的清洁时间表问题。此外,还提出了最佳清洁时间表供用户参考。在这项工作中,当清洁决策限制设定为总传热系数降低40%时,可以实现能耗最小、节能最大的最佳清洁计划。相反,清洁程序的最低数量与作为清洁决策限制的总传热系数降低90%有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oil Refinery Heat Exchanger Network Cleaning Scheduling Strategy with Unit Cleanability Consideration
Heat exchanger networks (HENs) play an important role in the chemical industries. Unfortunately, fouling is inevitable in heat exchangers operation. Therefore, the optimal cleaning procedure is required to restore heat exchangers' performance periodically. A systematic cleaning scheduling strategy for the heat exchanger network in an oil refinery is proposed in this work. There are 11 operating heat exchangers in an oil refinery to be reviewed. Different cleaning decision scenarios based on the overall heat transfer coefficient are explored for optimal cleaning schedule performance. The daily number of exchangers available to be cleaned i.e., the unit cleanability, is investigated while minimizing the energy consumption and the additional heat requirement due to the offline heat exchanger under cleaning procedure. The HEN performance and the energy-saving from the cleaning procedures are benchmarked with the uncleaned HEN. The results indicate that the cleaning procedure significantly increases the HEN performance and simultaneously reduces the heat requirement if compared to the untreated HEN benchmark. The possible conflicting situation is discussed when some heat exchangers are waiting to be cleaned due to the unit cleanability restriction, which allows the overall heat transfer coefficient to be below the allowed limit. Therefore, nonconflicting cleaning scheduling is also addressed in this work by relaxing the unit cleanability limit. Furthermore, the optimal cleaning schedule is also suggested for user reference. In this work, the optimum cleaning schedule with minimum energy consumption and maximum energy saving could be achieved when cleaning decision limit is set at 40% decrease of overall heat transfer coefficient. In the contrast, the lowest number of cleaning procedures is associated with 90% decrease in the overall heat transfer coefficient as the cleaning decision limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASEAN Journal of Chemical Engineering
ASEAN Journal of Chemical Engineering Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
15
期刊最新文献
Optimization of Defective Coffee Beans Decaffeination Using Palm Oil The Deep Eutectic Solvent in Used Batteries as an Electrolyte Additive for Potential Chitosan Solid Electrolyte Membrane Chemical Properties and Breakthrough Adsorption Study of Activated Carbon Derived from Carbon Precursor from Carbide Industry Extraction of Java Lemongrass (Cymbopogon citratus) Using Microwave-Assisted Hydro Distillation in Pilot Scale: Parametric Study and Modelling Catalytic Decarboxylation of Palm Oil to Green Diesel over Pellets of Ni-CaO/Activated Carbon (AC) Catalyst Under Subcritical Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1