{"title":"手性N-保护氨基酸酯酰化反应中胺外消旋体拆分的动力学规律","authors":"Stanislav Bakhtin, Marina Sinelnikova","doi":"10.1002/kin.21681","DOIUrl":null,"url":null,"abstract":"<p>In this work, the kinetic and stereochemical regularities of the kinetic resolution of the 1-phenylethylamine racemate in the acylation reaction under the action of optically active 4-nitrophenyl ester of <i>N</i>-protected phenylalanine in 2-propanol and 1,4-dioxane were studied. Kinetic measurements were carried out using UV spectroscopy. The studies of the reaction series made it possible to establish the reaction orders with respect to the reagents, as well as the kinetic regularities of the enantioselective acylation. It is shown that different kinetic schemes of the reaction take place in protic and aprotic solvents. Based on the experimental data on the reaction kinetics of both the individual enantiomers and the amine racemate, the enantioselectivity values of the acylation are calculated. It has been found that the nature of the solvent and the reagents ratio strongly affect the selectivity of kinetic resolution. Practical recommendations on the conditions of preparative kinetic resolution of amines by amino acid derivatives using the acylation reaction are proposed.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic regularities of resolution of amines racemates in the acylation reaction with chiral N-protected amino acids esters\",\"authors\":\"Stanislav Bakhtin, Marina Sinelnikova\",\"doi\":\"10.1002/kin.21681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, the kinetic and stereochemical regularities of the kinetic resolution of the 1-phenylethylamine racemate in the acylation reaction under the action of optically active 4-nitrophenyl ester of <i>N</i>-protected phenylalanine in 2-propanol and 1,4-dioxane were studied. Kinetic measurements were carried out using UV spectroscopy. The studies of the reaction series made it possible to establish the reaction orders with respect to the reagents, as well as the kinetic regularities of the enantioselective acylation. It is shown that different kinetic schemes of the reaction take place in protic and aprotic solvents. Based on the experimental data on the reaction kinetics of both the individual enantiomers and the amine racemate, the enantioselectivity values of the acylation are calculated. It has been found that the nature of the solvent and the reagents ratio strongly affect the selectivity of kinetic resolution. Practical recommendations on the conditions of preparative kinetic resolution of amines by amino acid derivatives using the acylation reaction are proposed.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21681\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21681","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Kinetic regularities of resolution of amines racemates in the acylation reaction with chiral N-protected amino acids esters
In this work, the kinetic and stereochemical regularities of the kinetic resolution of the 1-phenylethylamine racemate in the acylation reaction under the action of optically active 4-nitrophenyl ester of N-protected phenylalanine in 2-propanol and 1,4-dioxane were studied. Kinetic measurements were carried out using UV spectroscopy. The studies of the reaction series made it possible to establish the reaction orders with respect to the reagents, as well as the kinetic regularities of the enantioselective acylation. It is shown that different kinetic schemes of the reaction take place in protic and aprotic solvents. Based on the experimental data on the reaction kinetics of both the individual enantiomers and the amine racemate, the enantioselectivity values of the acylation are calculated. It has been found that the nature of the solvent and the reagents ratio strongly affect the selectivity of kinetic resolution. Practical recommendations on the conditions of preparative kinetic resolution of amines by amino acid derivatives using the acylation reaction are proposed.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.