HN1L的沉默抑制癌症细胞的增殖和迁移

IF 0.2 4区 生物学 Q4 BIOLOGY Periodicum Biologorum Pub Date : 2022-11-29 DOI:10.18054/pb.v124i1-2.20098
L. Varışlı, Veysel Tolan
{"title":"HN1L的沉默抑制癌症细胞的增殖和迁移","authors":"L. Varışlı, Veysel Tolan","doi":"10.18054/pb.v124i1-2.20098","DOIUrl":null,"url":null,"abstract":"Background and purpose: HN1L is a member of the HN1 gene family and shares about 30% similarity with HN1 which is another member of the family on the primary protein sequence. Since HN1 is an important gene that is involved in various cellular mechanisms and also differentially expressed in carcinogenesis, we investigated the effect of HN1L on some malignant behaviors of various cancer cells.Material and methods: Co-expression analysis, Gene Ontology enrichment, and database searches were performed to predict the cellular roles of HN1, and to investigate its expression in cancers and their corresponding normal tissues. Western blotting and Real-Time PCR were used to compare the expression of HN1L in the normal prostate cells and prostate cancer cells. Cell proliferation and migration assays were used to investigate the effects of HN1L depletion on cell proliferation and migration.Results: The results of co-expression and Gene Ontology enrichment analyses showed that HN1L is co-expressed with DNA replication and DNA damage response/repair associated genes. The database search results revealed that HN1L expression increases in at least 10 diverse cancer types compared to their normal corresponding tissues. This result was confirmed in the prostate cancer cell model, experimentally. Silencing of HN1L inhibited proliferative and migrative behaviors of prostate, breast, colon, and cervix cancer cells.Conclusions: HN1L probably is a novel proto-oncogene that is involved in the DNA metabolism-related mechanisms, and high HN1L level promotes further proliferation and migration in the cancer cells.","PeriodicalId":19950,"journal":{"name":"Periodicum Biologorum","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silencing of HN1L suppresses the proliferation and migration of cancer cells\",\"authors\":\"L. Varışlı, Veysel Tolan\",\"doi\":\"10.18054/pb.v124i1-2.20098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and purpose: HN1L is a member of the HN1 gene family and shares about 30% similarity with HN1 which is another member of the family on the primary protein sequence. Since HN1 is an important gene that is involved in various cellular mechanisms and also differentially expressed in carcinogenesis, we investigated the effect of HN1L on some malignant behaviors of various cancer cells.Material and methods: Co-expression analysis, Gene Ontology enrichment, and database searches were performed to predict the cellular roles of HN1, and to investigate its expression in cancers and their corresponding normal tissues. Western blotting and Real-Time PCR were used to compare the expression of HN1L in the normal prostate cells and prostate cancer cells. Cell proliferation and migration assays were used to investigate the effects of HN1L depletion on cell proliferation and migration.Results: The results of co-expression and Gene Ontology enrichment analyses showed that HN1L is co-expressed with DNA replication and DNA damage response/repair associated genes. The database search results revealed that HN1L expression increases in at least 10 diverse cancer types compared to their normal corresponding tissues. This result was confirmed in the prostate cancer cell model, experimentally. Silencing of HN1L inhibited proliferative and migrative behaviors of prostate, breast, colon, and cervix cancer cells.Conclusions: HN1L probably is a novel proto-oncogene that is involved in the DNA metabolism-related mechanisms, and high HN1L level promotes further proliferation and migration in the cancer cells.\",\"PeriodicalId\":19950,\"journal\":{\"name\":\"Periodicum Biologorum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodicum Biologorum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.18054/pb.v124i1-2.20098\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodicum Biologorum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.18054/pb.v124i1-2.20098","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:HN1L是HN1基因家族的成员,与该家族的另一个成员HN1在初级蛋白质序列上具有约30%的相似性。由于HN1是一个参与多种细胞机制的重要基因,在致癌作用中也有差异表达,我们研究了HN1L对各种癌症细胞某些恶性行为的影响。材料和方法:进行共表达分析、基因本体论富集和数据库搜索,以预测HN1的细胞作用,并研究其在癌症及其相应正常组织中的表达。用Western印迹法和Real-Time PCR法比较HN1L在正常前列腺细胞和前列腺癌症细胞中的表达。细胞增殖和迁移测定用于研究HN1L耗竭对细胞增殖和迁徙的影响。结果:共表达和基因本体富集分析结果表明,HN1L与DNA复制和DNA损伤反应/修复相关基因共表达。数据库搜索结果显示,与正常相应组织相比,HN1L在至少10种不同的癌症类型中的表达增加。这一结果在前列腺癌症细胞模型中得到了实验证实。HN1L的沉默抑制了前列腺、乳腺、结肠和宫颈癌症细胞的增殖和迁移行为。结论:HN1L可能是一种参与DNA代谢相关机制的新的原癌基因,高水平的HN1L可促进癌症细胞的进一步增殖和迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silencing of HN1L suppresses the proliferation and migration of cancer cells
Background and purpose: HN1L is a member of the HN1 gene family and shares about 30% similarity with HN1 which is another member of the family on the primary protein sequence. Since HN1 is an important gene that is involved in various cellular mechanisms and also differentially expressed in carcinogenesis, we investigated the effect of HN1L on some malignant behaviors of various cancer cells.Material and methods: Co-expression analysis, Gene Ontology enrichment, and database searches were performed to predict the cellular roles of HN1, and to investigate its expression in cancers and their corresponding normal tissues. Western blotting and Real-Time PCR were used to compare the expression of HN1L in the normal prostate cells and prostate cancer cells. Cell proliferation and migration assays were used to investigate the effects of HN1L depletion on cell proliferation and migration.Results: The results of co-expression and Gene Ontology enrichment analyses showed that HN1L is co-expressed with DNA replication and DNA damage response/repair associated genes. The database search results revealed that HN1L expression increases in at least 10 diverse cancer types compared to their normal corresponding tissues. This result was confirmed in the prostate cancer cell model, experimentally. Silencing of HN1L inhibited proliferative and migrative behaviors of prostate, breast, colon, and cervix cancer cells.Conclusions: HN1L probably is a novel proto-oncogene that is involved in the DNA metabolism-related mechanisms, and high HN1L level promotes further proliferation and migration in the cancer cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodicum Biologorum
Periodicum Biologorum 生物-生物学
CiteScore
0.80
自引率
0.00%
发文量
16
审稿时长
6-12 weeks
期刊介绍: This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
期刊最新文献
Tissue optical clearing methods for microscopy: A review of their application in neuroscience Attendance of extracurricular activities in the field of natural sciences and the attractiveness of the content offered for extracurricular activities in biology in elementary schools Ultrastructural and immunofluorescence features of the epidermal cells and its secretory granules in the amphioxus Branchiostoma lanceolatum L. Application of thermal analysis methods in biology and medicine A young researcher’s guide to three-dimensional fluorescence microscopy of living cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1