孟加拉湾南安达曼蛇绿岩的超镁铁性和基性岩石学:弧相关高压成因的证据

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Mineralogy and Petrology Pub Date : 2022-10-24 DOI:10.1007/s00710-022-00796-w
Tavheed Khan, Luc Achille Ziem A Bidias, Syed H. Jafri, Rohit Pandey, Nittala V. Chalapathi Rao, Manavalan Satyanarayanan, Drona Srinivasa Sarma
{"title":"孟加拉湾南安达曼蛇绿岩的超镁铁性和基性岩石学:弧相关高压成因的证据","authors":"Tavheed Khan,&nbsp;Luc Achille Ziem A Bidias,&nbsp;Syed H. Jafri,&nbsp;Rohit Pandey,&nbsp;Nittala V. Chalapathi Rao,&nbsp;Manavalan Satyanarayanan,&nbsp;Drona Srinivasa Sarma","doi":"10.1007/s00710-022-00796-w","DOIUrl":null,"url":null,"abstract":"<div><p>Minor ultramafic (dunite) and mafic (gabbroic) rock occurrences are exposed in South Andaman Island, Bay of Bengal. Dunite is in contact with serpentinite, while gabbroic rocks are in contact with the pyroxenite. Petrographic analysis using a petrographic microscope, major and trace element [including rare earth elements (REE)] analysis using an X-ray Fluorescence (XRF) spectrometer and the High Resolution Inductively Coupled Plasma Mass Spectrometer (HR-ICPMS), and mineral chemistry using an Electron Probe Micro-Analyzer (EPMA) were performed on selected ultramafic and mafic rocks. Petrographically, dunite is composed of olivine, clinopyroxene, and orthopyroxene, while olivine, clinopyroxene, orthopyroxene, and calcic plagioclase are present in olivine–gabbronorite. The bulk rock elemental relationship (Zr versus P<sub>2</sub>O<sub>5</sub> and TiO<sub>2</sub> versus Zr/P<sub>2</sub>O<sub>5</sub>) indicate that the dunite and olivine–gabbronorite are tholeiitic in composition. The clinopyroxene with high Mg# [Mg<sup>2+</sup>/(Mg<sup>2+</sup> + Fe<sup>2+</sup>)] and lower TiO<sub>2</sub> content is present in dunite, whereas the clinopyroxene with high Mg# and high TiO<sub>2</sub> content exists in olivine–gabbronorite. Cr<sub>2</sub>O<sub>3</sub> versus Mg# in the clinopyroxene relationship and negative Nb, Ta, and Ti anomalies in these rocks imply high pressure arc related peridotite mantle source. Our results suggest that the dunite and gabbroic rocks were also intruded in the Andaman Ophiolitic suite of rocks during earlier subduction setting in Late Cretaceous time. Further, it is suggested that these ophiolites have been obducted on to the leading edge of the Eurasian continent during the Mid–Eocene to Late Oligocene event, prior to the current tectonically active Andaman–Java subduction, which was initiated in the Late–Miocene.</p></div>","PeriodicalId":18547,"journal":{"name":"Mineralogy and Petrology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00710-022-00796-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Petrology of ultramafic and mafic rocks from the South Andaman Ophiolite, Bay of Bengal: Evidence for an arc-related high-pressure origin\",\"authors\":\"Tavheed Khan,&nbsp;Luc Achille Ziem A Bidias,&nbsp;Syed H. Jafri,&nbsp;Rohit Pandey,&nbsp;Nittala V. Chalapathi Rao,&nbsp;Manavalan Satyanarayanan,&nbsp;Drona Srinivasa Sarma\",\"doi\":\"10.1007/s00710-022-00796-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Minor ultramafic (dunite) and mafic (gabbroic) rock occurrences are exposed in South Andaman Island, Bay of Bengal. Dunite is in contact with serpentinite, while gabbroic rocks are in contact with the pyroxenite. Petrographic analysis using a petrographic microscope, major and trace element [including rare earth elements (REE)] analysis using an X-ray Fluorescence (XRF) spectrometer and the High Resolution Inductively Coupled Plasma Mass Spectrometer (HR-ICPMS), and mineral chemistry using an Electron Probe Micro-Analyzer (EPMA) were performed on selected ultramafic and mafic rocks. Petrographically, dunite is composed of olivine, clinopyroxene, and orthopyroxene, while olivine, clinopyroxene, orthopyroxene, and calcic plagioclase are present in olivine–gabbronorite. The bulk rock elemental relationship (Zr versus P<sub>2</sub>O<sub>5</sub> and TiO<sub>2</sub> versus Zr/P<sub>2</sub>O<sub>5</sub>) indicate that the dunite and olivine–gabbronorite are tholeiitic in composition. The clinopyroxene with high Mg# [Mg<sup>2+</sup>/(Mg<sup>2+</sup> + Fe<sup>2+</sup>)] and lower TiO<sub>2</sub> content is present in dunite, whereas the clinopyroxene with high Mg# and high TiO<sub>2</sub> content exists in olivine–gabbronorite. Cr<sub>2</sub>O<sub>3</sub> versus Mg# in the clinopyroxene relationship and negative Nb, Ta, and Ti anomalies in these rocks imply high pressure arc related peridotite mantle source. Our results suggest that the dunite and gabbroic rocks were also intruded in the Andaman Ophiolitic suite of rocks during earlier subduction setting in Late Cretaceous time. Further, it is suggested that these ophiolites have been obducted on to the leading edge of the Eurasian continent during the Mid–Eocene to Late Oligocene event, prior to the current tectonically active Andaman–Java subduction, which was initiated in the Late–Miocene.</p></div>\",\"PeriodicalId\":18547,\"journal\":{\"name\":\"Mineralogy and Petrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00710-022-00796-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00710-022-00796-w\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00710-022-00796-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在孟加拉湾南安达曼岛发现了少量超镁铁质(暗岩质)和镁铁质(辉长岩)产状。泥质岩与蛇纹岩接触,辉长岩与辉石岩接触。采用岩相显微镜进行岩石学分析,采用x射线荧光光谱仪(XRF)和高分辨率电感耦合等离子体质谱仪(HR-ICPMS)进行主要元素和微量元素(包括稀土元素(REE))分析,采用电子探针微量分析仪(EPMA)对选定的超镁铁质和基性岩石进行矿物化学分析。在岩石学上,均一岩由橄榄石、斜辉石和正辉石组成,而橄榄石-辉长岩中则有橄榄石、斜辉石、正辉石和钙斜长石。体积岩石元素关系(Zr与P2O5、TiO2与Zr/P2O5)表明,其组成为拉斑岩和橄榄辉长岩。白云岩中存在高Mg# [Mg2+/(Mg2+ + Fe2+)]和低TiO2含量的斜辉石,橄榄辉长岩中存在高Mg#和高TiO2含量的斜辉石。斜辉石中Cr2O3与mg#呈负相关关系,且Nb、Ta、Ti呈负异常,提示与高压弧相关的橄榄岩地幔源。研究结果表明,在晚白垩世早期的俯冲背景下,安达曼蛇绿岩套中也侵入了白云岩和辉长岩。此外,这些蛇绿岩在中始新世至晚渐新世期间被逆冲到欧亚大陆的前缘,早于现今晚中新世开始的构造活跃的安达曼-爪哇俯冲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Petrology of ultramafic and mafic rocks from the South Andaman Ophiolite, Bay of Bengal: Evidence for an arc-related high-pressure origin

Minor ultramafic (dunite) and mafic (gabbroic) rock occurrences are exposed in South Andaman Island, Bay of Bengal. Dunite is in contact with serpentinite, while gabbroic rocks are in contact with the pyroxenite. Petrographic analysis using a petrographic microscope, major and trace element [including rare earth elements (REE)] analysis using an X-ray Fluorescence (XRF) spectrometer and the High Resolution Inductively Coupled Plasma Mass Spectrometer (HR-ICPMS), and mineral chemistry using an Electron Probe Micro-Analyzer (EPMA) were performed on selected ultramafic and mafic rocks. Petrographically, dunite is composed of olivine, clinopyroxene, and orthopyroxene, while olivine, clinopyroxene, orthopyroxene, and calcic plagioclase are present in olivine–gabbronorite. The bulk rock elemental relationship (Zr versus P2O5 and TiO2 versus Zr/P2O5) indicate that the dunite and olivine–gabbronorite are tholeiitic in composition. The clinopyroxene with high Mg# [Mg2+/(Mg2+ + Fe2+)] and lower TiO2 content is present in dunite, whereas the clinopyroxene with high Mg# and high TiO2 content exists in olivine–gabbronorite. Cr2O3 versus Mg# in the clinopyroxene relationship and negative Nb, Ta, and Ti anomalies in these rocks imply high pressure arc related peridotite mantle source. Our results suggest that the dunite and gabbroic rocks were also intruded in the Andaman Ophiolitic suite of rocks during earlier subduction setting in Late Cretaceous time. Further, it is suggested that these ophiolites have been obducted on to the leading edge of the Eurasian continent during the Mid–Eocene to Late Oligocene event, prior to the current tectonically active Andaman–Java subduction, which was initiated in the Late–Miocene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mineralogy and Petrology
Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Mineralogy and Petrology welcomes manuscripts from the classical fields of mineralogy, igneous and metamorphic petrology, geochemistry, crystallography, as well as their applications in academic experimentation and research, materials science and engineering, for technology, industry, environment, or society. The journal strongly promotes cross-fertilization among Earth-scientific and applied materials-oriented disciplines. Purely descriptive manuscripts on regional topics will not be considered. Mineralogy and Petrology was founded in 1872 by Gustav Tschermak as "Mineralogische und Petrographische Mittheilungen". It is one of Europe''s oldest geoscience journals. Former editors include outstanding names such as Gustav Tschermak, Friedrich Becke, Felix Machatschki, Josef Zemann, and Eugen F. Stumpfl.
期刊最新文献
Unveiling CCS Potential of the Rio Bonito Formation, Paraná Basin, southern Brazil: The Dawsonite Discovery Karlleuite Ca2MnO4 – a first mineral with the Ruddlesden-Popper type structure from Bellerberg volcano, Germany On thorite in Nubian granodiorite (Southwestern Egypt) Petrogenesis of microgranular enclaves in the A-type granitoid Krasnopol intrusion (Mazury Complex, northeastern Poland): Evidence of magma mixing Electron paramagnetic resonance signature of rock-forming blue quartz from the Albești (Romania) granite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1