Cu/In/MOF双金属电催化剂选择性电化学还原CO2为CO/甲酸盐的阴离子调控工程

Bingqing Xu , Israr Masood Ul Hasan , Luwei Peng , Junyu Liu , Nengneng Xu , Mengyang Fan , Nabeel Khan Niazi , Jinli Qiao
{"title":"Cu/In/MOF双金属电催化剂选择性电化学还原CO2为CO/甲酸盐的阴离子调控工程","authors":"Bingqing Xu ,&nbsp;Israr Masood Ul Hasan ,&nbsp;Luwei Peng ,&nbsp;Junyu Liu ,&nbsp;Nengneng Xu ,&nbsp;Mengyang Fan ,&nbsp;Nabeel Khan Niazi ,&nbsp;Jinli Qiao","doi":"10.1016/j.matre.2022.100139","DOIUrl":null,"url":null,"abstract":"<div><p>The conversion of carbon dioxide (CO<sub>2</sub>) into high-value added energy fuels and chemicals (CO, formate, C<sub>2</sub>H<sub>4</sub>, etc.) through electrochemical reduction (eCO<sub>2</sub>R) is a promising avenue to sustainable development. However, low selectivity, barren activity and poor stability of the electrodes hinder the large-scale application of eCO<sub>2</sub>R. Herein, we reported a copper-indium-organic-framework (CuIn-MOF) based high-performance catalyst for eCO<sub>2</sub>R. Electrochemical measurement results reveal that CuIn-MOF exhibits high Faradaic efficiency (<em>FE</em>) of CO and formate (300 mV, <em>FE</em><sub>CO</sub> = 78.6% at −0.86 V vs. RHE, <em>FE</em><sub>HCOO</sub><sup>−</sup> = 48.4% at −1.16 V vs. RHE, respectively) in a broad range of current density (20.1–88.4 mA cm<sup>−2</sup>) with long-term stability (6 h) for eCO<sub>2</sub>R in 0.5 M KHCO<sub>3</sub> electrolyte solution. Specifically, through anion-regulation engineering, SO<sub>4</sub><sup>2−</sup> anion precursor is more beneficial for the formic acid generation than NO<sub>3</sub><sup>−</sup> anion precursor; while for SO<sub>4</sub><sup>2−</sup> anion precursor, Cu plays a positive regulating role in eCO<sub>2</sub>R to CO compared to In. Additionally, the high performance in a home-made eCO<sub>2</sub>R reactor derives benefit from enhanced intrinsic activity and charge re-distribution can be attributed to the formation of In-doped Cu layer.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"2 3","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666935822000775/pdfft?md5=90cac0e82f66a50b5656978d0607932d&pid=1-s2.0-S2666935822000775-main.pdf","citationCount":"12","resultStr":"{\"title\":\"Anion-regulation engineering toward Cu/In/MOF bimetallic electrocatalysts for selective electrochemical reduction of CO2 to CO/formate\",\"authors\":\"Bingqing Xu ,&nbsp;Israr Masood Ul Hasan ,&nbsp;Luwei Peng ,&nbsp;Junyu Liu ,&nbsp;Nengneng Xu ,&nbsp;Mengyang Fan ,&nbsp;Nabeel Khan Niazi ,&nbsp;Jinli Qiao\",\"doi\":\"10.1016/j.matre.2022.100139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The conversion of carbon dioxide (CO<sub>2</sub>) into high-value added energy fuels and chemicals (CO, formate, C<sub>2</sub>H<sub>4</sub>, etc.) through electrochemical reduction (eCO<sub>2</sub>R) is a promising avenue to sustainable development. However, low selectivity, barren activity and poor stability of the electrodes hinder the large-scale application of eCO<sub>2</sub>R. Herein, we reported a copper-indium-organic-framework (CuIn-MOF) based high-performance catalyst for eCO<sub>2</sub>R. Electrochemical measurement results reveal that CuIn-MOF exhibits high Faradaic efficiency (<em>FE</em>) of CO and formate (300 mV, <em>FE</em><sub>CO</sub> = 78.6% at −0.86 V vs. RHE, <em>FE</em><sub>HCOO</sub><sup>−</sup> = 48.4% at −1.16 V vs. RHE, respectively) in a broad range of current density (20.1–88.4 mA cm<sup>−2</sup>) with long-term stability (6 h) for eCO<sub>2</sub>R in 0.5 M KHCO<sub>3</sub> electrolyte solution. Specifically, through anion-regulation engineering, SO<sub>4</sub><sup>2−</sup> anion precursor is more beneficial for the formic acid generation than NO<sub>3</sub><sup>−</sup> anion precursor; while for SO<sub>4</sub><sup>2−</sup> anion precursor, Cu plays a positive regulating role in eCO<sub>2</sub>R to CO compared to In. Additionally, the high performance in a home-made eCO<sub>2</sub>R reactor derives benefit from enhanced intrinsic activity and charge re-distribution can be attributed to the formation of In-doped Cu layer.</p></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":\"2 3\",\"pages\":\"Article 100139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666935822000775/pdfft?md5=90cac0e82f66a50b5656978d0607932d&pid=1-s2.0-S2666935822000775-main.pdf\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666935822000775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935822000775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

通过电化学还原(eCO2R)将二氧化碳(CO2)转化为高附加值的能源燃料和化学品(CO、甲酸酯、C2H4等)是一种有前途的可持续发展途径。但其选择性低、活性差、稳定性差等缺点阻碍了eCO2R的大规模应用。在此,我们报道了一种基于铜铟有机框架(cu - mof)的高性能eCO2R催化剂。电化学测量结果表明,cu - mof在电流密度范围(20.1 ~ 88.4 mA cm−2)内具有较高的CO和甲酸的法拉第效率(FE)(−0.86 V vs. RHE时FECO = 78.6%,−1.16 V vs. RHE时FEHCOO = 48.4%),且在0.5 M KHCO3电解质溶液中eCO2R的长期稳定性(6 h)。具体来说,通过阴离子调控工程,SO42−阴离子前体比NO3−阴离子前体更有利于甲酸的生成;而对于SO42−阴离子前驱体,Cu比in在eCO2R到CO中起正向调节作用。此外,国产eCO2R反应器的高性能得益于增强的本征活性和电荷再分配,这可归因于in -掺杂Cu层的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anion-regulation engineering toward Cu/In/MOF bimetallic electrocatalysts for selective electrochemical reduction of CO2 to CO/formate

The conversion of carbon dioxide (CO2) into high-value added energy fuels and chemicals (CO, formate, C2H4, etc.) through electrochemical reduction (eCO2R) is a promising avenue to sustainable development. However, low selectivity, barren activity and poor stability of the electrodes hinder the large-scale application of eCO2R. Herein, we reported a copper-indium-organic-framework (CuIn-MOF) based high-performance catalyst for eCO2R. Electrochemical measurement results reveal that CuIn-MOF exhibits high Faradaic efficiency (FE) of CO and formate (300 mV, FECO = 78.6% at −0.86 V vs. RHE, FEHCOO = 48.4% at −1.16 V vs. RHE, respectively) in a broad range of current density (20.1–88.4 mA cm−2) with long-term stability (6 h) for eCO2R in 0.5 M KHCO3 electrolyte solution. Specifically, through anion-regulation engineering, SO42− anion precursor is more beneficial for the formic acid generation than NO3 anion precursor; while for SO42− anion precursor, Cu plays a positive regulating role in eCO2R to CO compared to In. Additionally, the high performance in a home-made eCO2R reactor derives benefit from enhanced intrinsic activity and charge re-distribution can be attributed to the formation of In-doped Cu layer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
材料导报:能源(英文)
材料导报:能源(英文) Renewable Energy, Sustainability and the Environment, Nanotechnology
CiteScore
13.00
自引率
0.00%
发文量
0
审稿时长
50 days
期刊最新文献
Outside Front Cover Contents A triboelectric nanogenerator based on a spiral rotating shaft for efficient marine energy harvesting of the hydrostatic pressure differential Synthesis of nanostructured zinc oxide and its composite with carbon dots for DSSCs applications using flexible electrode Advancements in biomass gasification research utilizing iron-based oxygen carriers in chemical looping: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1