主动触摸中小尺度特征的脑网络

Q4 Neuroscience Neuroimage. Reports Pub Date : 2022-12-01 DOI:10.1016/j.ynirp.2022.100123
Saeed Babadi , Roger Gassert , Vincent Hayward , Marco Piccirelli , Spyros Kollias , Theodore E. Milner
{"title":"主动触摸中小尺度特征的脑网络","authors":"Saeed Babadi ,&nbsp;Roger Gassert ,&nbsp;Vincent Hayward ,&nbsp;Marco Piccirelli ,&nbsp;Spyros Kollias ,&nbsp;Theodore E. Milner","doi":"10.1016/j.ynirp.2022.100123","DOIUrl":null,"url":null,"abstract":"<div><p>An important tactile function is the active detection of small-scale features, such as edges or asperities, which depends on fine hand motor control. Using a resting-state fMRI paradigm, we sought to identify the functional connectivity of the brain network engaged in mapping tactile inputs to and from regions engaged in motor preparation and planning during active touch. Human participants actively located small-scale tactile features that were rendered by a computer-controlled tactile display. To induce rapid perceptual learning, the contrast between the target and the surround was reduced whenever a criterion level of success was achieved, thereby raising the task difficulty. Multiple cortical and subcortical neural connections within a parietal-cerebellar-frontal network were identified by correlating behavioral performance with changes in functional connectivity. These cortical areas reflected perceptual, cognitive, and attention-based processes required to detect and use small-scale tactile features for hand dexterity.</p></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":"2 4","pages":"Article 100123"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666956022000472/pdfft?md5=63871202944bf2d77e8c7e47e446f1b8&pid=1-s2.0-S2666956022000472-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Brain network for small-scale features in active touch\",\"authors\":\"Saeed Babadi ,&nbsp;Roger Gassert ,&nbsp;Vincent Hayward ,&nbsp;Marco Piccirelli ,&nbsp;Spyros Kollias ,&nbsp;Theodore E. Milner\",\"doi\":\"10.1016/j.ynirp.2022.100123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An important tactile function is the active detection of small-scale features, such as edges or asperities, which depends on fine hand motor control. Using a resting-state fMRI paradigm, we sought to identify the functional connectivity of the brain network engaged in mapping tactile inputs to and from regions engaged in motor preparation and planning during active touch. Human participants actively located small-scale tactile features that were rendered by a computer-controlled tactile display. To induce rapid perceptual learning, the contrast between the target and the surround was reduced whenever a criterion level of success was achieved, thereby raising the task difficulty. Multiple cortical and subcortical neural connections within a parietal-cerebellar-frontal network were identified by correlating behavioral performance with changes in functional connectivity. These cortical areas reflected perceptual, cognitive, and attention-based processes required to detect and use small-scale tactile features for hand dexterity.</p></div>\",\"PeriodicalId\":74277,\"journal\":{\"name\":\"Neuroimage. Reports\",\"volume\":\"2 4\",\"pages\":\"Article 100123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666956022000472/pdfft?md5=63871202944bf2d77e8c7e47e446f1b8&pid=1-s2.0-S2666956022000472-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage. Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666956022000472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666956022000472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

摘要

一个重要的触觉功能是主动检测小尺度特征,如边缘或凹凸不平,这取决于精细的手部运动控制。使用静息状态fMRI范式,我们试图确定参与映射触觉输入的大脑网络的功能连通性,并在主动触摸期间从参与运动准备和计划的区域映射触觉输入。人类参与者主动定位由计算机控制的触觉显示器呈现的小尺度触觉特征。为了诱导快速感知学习,每当成功达到一个标准水平时,目标和周围环境之间的对比就会减少,从而提高任务难度。在顶叶-小脑-额叶网络中,通过将行为表现与功能连接的变化相关联,确定了多个皮层和皮层下神经连接。这些皮质区域反映了感知、认知和基于注意力的过程,这些过程是检测和使用手部灵巧的小尺度触觉特征所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain network for small-scale features in active touch

An important tactile function is the active detection of small-scale features, such as edges or asperities, which depends on fine hand motor control. Using a resting-state fMRI paradigm, we sought to identify the functional connectivity of the brain network engaged in mapping tactile inputs to and from regions engaged in motor preparation and planning during active touch. Human participants actively located small-scale tactile features that were rendered by a computer-controlled tactile display. To induce rapid perceptual learning, the contrast between the target and the surround was reduced whenever a criterion level of success was achieved, thereby raising the task difficulty. Multiple cortical and subcortical neural connections within a parietal-cerebellar-frontal network were identified by correlating behavioral performance with changes in functional connectivity. These cortical areas reflected perceptual, cognitive, and attention-based processes required to detect and use small-scale tactile features for hand dexterity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroimage. Reports
Neuroimage. Reports Neuroscience (General)
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
87 days
期刊最新文献
Measuring cognitive load in multitasking using mobile fNIRS MRI-guided clustering of patients with mild dementia due to Alzheimer's disease using self-organizing maps Evaluating state-based network dynamics in anhedonia Unresponsiveness induced by sevoflurane and propofol is associated with reduced basal forebrain cholinergic nuclei functional connectivity in humans, a pilot exploratory study Increased functional connectivity of amygdalar-frontal pathways in patients with alcohol use disorder and childhood trauma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1