{"title":"非局部粘弹性Euler-Bernoulli梁模型:一种基于延迟拒绝自适应metropolis算法的参数估计贝叶斯方法","authors":"D. S. Faria, L. T. Stutz, D. Castello","doi":"10.1080/17415977.2020.1865344","DOIUrl":null,"url":null,"abstract":"The present work presents a model for nonlocal and viscoelastic Euler-Bernoulli beams and aspects of its calibration are addressed. The nonlocal feature of the model is described by the nonlocal elasticity theory proposed by Eringen and its viscoelastic behaviour is modelled by means of internal variables. Parametric analyses are performed to determine the impact of the nonlocal and viscoelastic parameters on the modal properties of the system. Inverse analyses are performed under the Bayesian framework and samples of the posterior density function are obtained by means of the Delayed Rejection Adaptive Metropolis (DRAM). The inverse analyses consider a nonlocal viscoelastic beam model with one internal variable and they address three aspects, namely: the impact of a misspecification of the beam diameter, the impact of modelling the beam diameter as an unknown but uninteresting model parameter and the model calibration when synthetic experimental data comes from a model containing two internal variables. The model parameters were chosen such that the system resembles a Single-Walled Carbon Nanotube (SWCNT).","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"1672 - 1701"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2020.1865344","citationCount":"0","resultStr":"{\"title\":\"Nonlocal viscoelastic Euler-Bernoulli beam model: a Bayesian approach for parameter estimation using the delayed rejection adaptive metropolis algorithm\",\"authors\":\"D. S. Faria, L. T. Stutz, D. Castello\",\"doi\":\"10.1080/17415977.2020.1865344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work presents a model for nonlocal and viscoelastic Euler-Bernoulli beams and aspects of its calibration are addressed. The nonlocal feature of the model is described by the nonlocal elasticity theory proposed by Eringen and its viscoelastic behaviour is modelled by means of internal variables. Parametric analyses are performed to determine the impact of the nonlocal and viscoelastic parameters on the modal properties of the system. Inverse analyses are performed under the Bayesian framework and samples of the posterior density function are obtained by means of the Delayed Rejection Adaptive Metropolis (DRAM). The inverse analyses consider a nonlocal viscoelastic beam model with one internal variable and they address three aspects, namely: the impact of a misspecification of the beam diameter, the impact of modelling the beam diameter as an unknown but uninteresting model parameter and the model calibration when synthetic experimental data comes from a model containing two internal variables. The model parameters were chosen such that the system resembles a Single-Walled Carbon Nanotube (SWCNT).\",\"PeriodicalId\":54926,\"journal\":{\"name\":\"Inverse Problems in Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"1672 - 1701\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17415977.2020.1865344\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems in Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17415977.2020.1865344\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2020.1865344","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Nonlocal viscoelastic Euler-Bernoulli beam model: a Bayesian approach for parameter estimation using the delayed rejection adaptive metropolis algorithm
The present work presents a model for nonlocal and viscoelastic Euler-Bernoulli beams and aspects of its calibration are addressed. The nonlocal feature of the model is described by the nonlocal elasticity theory proposed by Eringen and its viscoelastic behaviour is modelled by means of internal variables. Parametric analyses are performed to determine the impact of the nonlocal and viscoelastic parameters on the modal properties of the system. Inverse analyses are performed under the Bayesian framework and samples of the posterior density function are obtained by means of the Delayed Rejection Adaptive Metropolis (DRAM). The inverse analyses consider a nonlocal viscoelastic beam model with one internal variable and they address three aspects, namely: the impact of a misspecification of the beam diameter, the impact of modelling the beam diameter as an unknown but uninteresting model parameter and the model calibration when synthetic experimental data comes from a model containing two internal variables. The model parameters were chosen such that the system resembles a Single-Walled Carbon Nanotube (SWCNT).
期刊介绍:
Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome.
Topics include:
-Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks).
-Material properties: determination of physical properties of media.
-Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.).
-Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.).
-Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.