D. Sundani, S. Widiyanto, Y. Karyanti, D. T. Wardani
{"title":"基于量子Canny边缘检测算法的图像边缘识别","authors":"D. Sundani, S. Widiyanto, Y. Karyanti, D. T. Wardani","doi":"10.5614/itbj.ict.res.appl.2019.13.2.4","DOIUrl":null,"url":null,"abstract":"Identification of image edges using edge detection is done to obtain images that are sharp and clear. The selection of the edge detection algorithm will affect the result. Canny operators have an advantage compared to other edge detection operators because of their ability to detect not only strong edges but also weak edges. Until now, Canny edge detection has been done using classical computing where data are expressed in bits, 0 or 1. This paper proposes the identification of image edges using a quantum Canny edge detection algorithm, where data are expressed in the form of quantum bits (qubits). Besides 0 or 1, a value can also be 0 and 1 simultaneously so there will be many more possible values that can be obtained. There are three stages in the proposed method, namely the input image stage, the preprocessing stage, and the quantum edge detection stage. Visually, the results show that quantum Canny edge detection can detect more edges compared to classic Canny edge detection, with an average increase of 4.05% .","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Identification of Image Edge Using Quantum Canny Edge Detection Algorithm\",\"authors\":\"D. Sundani, S. Widiyanto, Y. Karyanti, D. T. Wardani\",\"doi\":\"10.5614/itbj.ict.res.appl.2019.13.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of image edges using edge detection is done to obtain images that are sharp and clear. The selection of the edge detection algorithm will affect the result. Canny operators have an advantage compared to other edge detection operators because of their ability to detect not only strong edges but also weak edges. Until now, Canny edge detection has been done using classical computing where data are expressed in bits, 0 or 1. This paper proposes the identification of image edges using a quantum Canny edge detection algorithm, where data are expressed in the form of quantum bits (qubits). Besides 0 or 1, a value can also be 0 and 1 simultaneously so there will be many more possible values that can be obtained. There are three stages in the proposed method, namely the input image stage, the preprocessing stage, and the quantum edge detection stage. Visually, the results show that quantum Canny edge detection can detect more edges compared to classic Canny edge detection, with an average increase of 4.05% .\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itbj.ict.res.appl.2019.13.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2019.13.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Identification of Image Edge Using Quantum Canny Edge Detection Algorithm
Identification of image edges using edge detection is done to obtain images that are sharp and clear. The selection of the edge detection algorithm will affect the result. Canny operators have an advantage compared to other edge detection operators because of their ability to detect not only strong edges but also weak edges. Until now, Canny edge detection has been done using classical computing where data are expressed in bits, 0 or 1. This paper proposes the identification of image edges using a quantum Canny edge detection algorithm, where data are expressed in the form of quantum bits (qubits). Besides 0 or 1, a value can also be 0 and 1 simultaneously so there will be many more possible values that can be obtained. There are three stages in the proposed method, namely the input image stage, the preprocessing stage, and the quantum edge detection stage. Visually, the results show that quantum Canny edge detection can detect more edges compared to classic Canny edge detection, with an average increase of 4.05% .
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.