混合整数非线性规划方法在LOGISTIC回归变量选择中的应用

K. Kimura
{"title":"混合整数非线性规划方法在LOGISTIC回归变量选择中的应用","authors":"K. Kimura","doi":"10.15807/JORSJ.62.15","DOIUrl":null,"url":null,"abstract":"Variable selection is the process of finding variables relevant to a given dataset in model construction. One of the techniques for variable selection is exponentially evaluating many models with a goodness-of-fit (GOF) measure, for example, Akaike information criterion (AIC). The model with the lowest GOF value is considered as the best model. We proposed a mixed integer nonlinear programming approach to AIC minimization for linear regression and showed that the approach outperformed existing approaches in terms of computational time [13]. In this study, we apply the approach in [13] to AIC minimization for logistic regression and explain that a few of the techniques developed previously [13], for example, relaxation and a branching rule, can be used for the AIC minimization. The proposed approach requires solving relaxation problems, which are unconstrained convex problems. We apply an iterative method with an effective initial guess to solve these problems. We implement the proposed approach via SCIP, which is a noncommercial optimization software and a branch-and-bound framework. We compare the proposed approach with a piecewise linear approximation approach developed by Sato and others [16]. The results of computational experiments show that the proposed approach finds the model with the lowest AIC value if the number of candidates for variables is 45 or lower.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"APPLICATION OF A MIXED INTEGER NONLINEAR PROGRAMMING APPROACH TO VARIABLE SELECTION IN LOGISTIC REGRESSION\",\"authors\":\"K. Kimura\",\"doi\":\"10.15807/JORSJ.62.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variable selection is the process of finding variables relevant to a given dataset in model construction. One of the techniques for variable selection is exponentially evaluating many models with a goodness-of-fit (GOF) measure, for example, Akaike information criterion (AIC). The model with the lowest GOF value is considered as the best model. We proposed a mixed integer nonlinear programming approach to AIC minimization for linear regression and showed that the approach outperformed existing approaches in terms of computational time [13]. In this study, we apply the approach in [13] to AIC minimization for logistic regression and explain that a few of the techniques developed previously [13], for example, relaxation and a branching rule, can be used for the AIC minimization. The proposed approach requires solving relaxation problems, which are unconstrained convex problems. We apply an iterative method with an effective initial guess to solve these problems. We implement the proposed approach via SCIP, which is a noncommercial optimization software and a branch-and-bound framework. We compare the proposed approach with a piecewise linear approximation approach developed by Sato and others [16]. The results of computational experiments show that the proposed approach finds the model with the lowest AIC value if the number of candidates for variables is 45 or lower.\",\"PeriodicalId\":51107,\"journal\":{\"name\":\"Journal of the Operations Research Society of Japan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Operations Research Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15807/JORSJ.62.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/JORSJ.62.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 3

摘要

变量选择是在模型构建中找到与给定数据集相关的变量的过程。变量选择的技术之一是用拟合优度(GOF)度量对许多模型进行指数评估,例如Akaike信息准则(AIC)。GOF值最低的模型被认为是最佳模型。我们提出了一种用于线性回归AIC最小化的混合整数非线性规划方法,并表明该方法在计算时间方面优于现有方法[13]。在本研究中,我们将[13]中的方法应用于逻辑回归的AIC最小化,并解释了之前[13]开发的一些技术,例如松弛和分支规则,可以用于AIC最小化。所提出的方法需要求解松弛问题,这是一个不受约束的凸问题。我们应用一种迭代方法和一个有效的初始猜测来解决这些问题。我们通过SCIP实现了所提出的方法,SCIP是一个非商业优化软件和一个分支绑定框架。我们将所提出的方法与Sato等人[16]开发的分段线性近似方法进行了比较。计算实验结果表明,如果变量的候选数量为45或更低,则所提出的方法可以找到AIC值最低的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
APPLICATION OF A MIXED INTEGER NONLINEAR PROGRAMMING APPROACH TO VARIABLE SELECTION IN LOGISTIC REGRESSION
Variable selection is the process of finding variables relevant to a given dataset in model construction. One of the techniques for variable selection is exponentially evaluating many models with a goodness-of-fit (GOF) measure, for example, Akaike information criterion (AIC). The model with the lowest GOF value is considered as the best model. We proposed a mixed integer nonlinear programming approach to AIC minimization for linear regression and showed that the approach outperformed existing approaches in terms of computational time [13]. In this study, we apply the approach in [13] to AIC minimization for logistic regression and explain that a few of the techniques developed previously [13], for example, relaxation and a branching rule, can be used for the AIC minimization. The proposed approach requires solving relaxation problems, which are unconstrained convex problems. We apply an iterative method with an effective initial guess to solve these problems. We implement the proposed approach via SCIP, which is a noncommercial optimization software and a branch-and-bound framework. We compare the proposed approach with a piecewise linear approximation approach developed by Sato and others [16]. The results of computational experiments show that the proposed approach finds the model with the lowest AIC value if the number of candidates for variables is 45 or lower.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Operations Research Society of Japan
Journal of the Operations Research Society of Japan 管理科学-运筹学与管理科学
CiteScore
0.70
自引率
0.00%
发文量
12
审稿时长
12 months
期刊介绍: The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.
期刊最新文献
IMPLEMENTING ARROW–DEBREU EQUILIBRIA IN APPROXIMATELY COMPLETE SECURITY MARKETS A RIEMANNIAN-GEOMETRICAL APPROACH TO STRICTLY CONVEX QUADRATIC PROGRAMMING WITH CONVEXITY-PRESERVING METRIC PARAMETERIZATION A SUBGEOMETRIC CONVERGENCE FORMULA FOR TOTAL-VARIATION ERROR OF THE LEVEL-INCREMENT TRUNCATION APPROXIMATION OF M/G/1-TYPE MARKOV CHAINS MIXED-INTEGER DC PROGRAMMING BASED ALGORITHMS FOR THE CIRCULAR PACKING PROBLEM A HYBRID ALGORITHM FOR THE ADWORDS PROBLEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1