大陆造山带的古气候和地形:利用古代大气降水的初始氧同位素进行理论反演

Pub Date : 2022-12-01 DOI:10.1017/S1755691023000075
Chun-Sheng Wei, Zi‐Fu Zhao
{"title":"大陆造山带的古气候和地形:利用古代大气降水的初始氧同位素进行理论反演","authors":"Chun-Sheng Wei, Zi‐Fu Zhao","doi":"10.1017/S1755691023000075","DOIUrl":null,"url":null,"abstract":"ABSTRACT Ancient environments have been mostly reconstructed with exogenous records, yet the potential constraints from endogenous archives were less emphasised. It has been well known that the outer- and inner-spheres of the planetary Earth are naturally linked and/or interplayed each other among geospheres. As stable isotopes of the meteoric water are globally dependent upon precipitating environments, rocks and/or minerals hydrothermally altered by the meteoric water can thus imprint environmental information of continental settings. These valuable clues, however, have been intuitively and/or qualitatively inferred up to now. On the basis of an innovative procedure recently proposed for dealing with thermodynamic re-equilibration of oxygen isotopes between constituent minerals and water from fossil hydrothermal systems, ancient meteoric waters are theoretically inverted from the early Cretaceous post-collisional granitoid and Triassic gneissic country rocks across the Dabie orogen in central-eastern China. The initial oxygen isotopes of ancient meteoric water (i.e., $\\delta ^{18}O_W^i$ value hereafter) range from −11.01 ± 0.43 (one standard deviation, 1SD) to −7.61 ± 0.07‰ in this study, yet systematically and/or statistically deviating from modern local precipitation. These imply that either palaeoclimate could be colder than the present at least during the early Cretaceous or palaeoaltimetry has geographically varied across the Dabie orogen since the Triassic. Moreover, the lifetime of fossil hydrothermal systems is kinetically quantified to less than 1.2 million years (Myr) for the concurrent lowering of oxygen isotopes of hydrothermally altered rock-forming minerals through the surface-reaction oxygen exchange with ancient meteoric waters herein. Our results thus suggest that palaeoenvironments of the continental orogen can be scientifically and methodologically unearthed from endogenous archives and theoretical inversion of $\\delta ^{18}O_W^i$ values can be quantitatively applied beyond the Dabie orogen.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Palaeo-climate and -topography of the continental orogen: Theoretical inversion with initial oxygen isotopes of ancient meteoric water\",\"authors\":\"Chun-Sheng Wei, Zi‐Fu Zhao\",\"doi\":\"10.1017/S1755691023000075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Ancient environments have been mostly reconstructed with exogenous records, yet the potential constraints from endogenous archives were less emphasised. It has been well known that the outer- and inner-spheres of the planetary Earth are naturally linked and/or interplayed each other among geospheres. As stable isotopes of the meteoric water are globally dependent upon precipitating environments, rocks and/or minerals hydrothermally altered by the meteoric water can thus imprint environmental information of continental settings. These valuable clues, however, have been intuitively and/or qualitatively inferred up to now. On the basis of an innovative procedure recently proposed for dealing with thermodynamic re-equilibration of oxygen isotopes between constituent minerals and water from fossil hydrothermal systems, ancient meteoric waters are theoretically inverted from the early Cretaceous post-collisional granitoid and Triassic gneissic country rocks across the Dabie orogen in central-eastern China. The initial oxygen isotopes of ancient meteoric water (i.e., $\\\\delta ^{18}O_W^i$ value hereafter) range from −11.01 ± 0.43 (one standard deviation, 1SD) to −7.61 ± 0.07‰ in this study, yet systematically and/or statistically deviating from modern local precipitation. These imply that either palaeoclimate could be colder than the present at least during the early Cretaceous or palaeoaltimetry has geographically varied across the Dabie orogen since the Triassic. Moreover, the lifetime of fossil hydrothermal systems is kinetically quantified to less than 1.2 million years (Myr) for the concurrent lowering of oxygen isotopes of hydrothermally altered rock-forming minerals through the surface-reaction oxygen exchange with ancient meteoric waters herein. Our results thus suggest that palaeoenvironments of the continental orogen can be scientifically and methodologically unearthed from endogenous archives and theoretical inversion of $\\\\delta ^{18}O_W^i$ values can be quantitatively applied beyond the Dabie orogen.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/S1755691023000075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/S1755691023000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要古代环境大多是通过外源性记录重建的,但内源性档案的潜在约束却很少得到重视。众所周知,地球的外层和内层在地球圈之间自然相连和/或相互作用。由于大气降水的稳定同位素在全球范围内取决于沉淀环境,因此,被大气降水水热蚀变的岩石和/或矿物可以留下大陆环境的环境信息。然而,到目前为止,这些有价值的线索已经得到了直观和/或定性的推断。在最近提出的一种创新程序的基础上,处理组成矿物和化石热液系统水之间氧同位素的热力学再平衡,从理论上讲,古代大气降水是从中国中东部大别造山带上白垩纪早期碰撞后花岗质岩石和三叠纪片麻质围岩反演而来的。古代大气降水的初始氧同位素(即$\delta^{18}O_W^i$值)在−11.01±0.43(一个标准差,1SD)到−7.61±0.07‰之间,但系统地和/或统计地偏离了现代局部降水。这意味着,至少在白垩纪早期,古气候可能比现在更冷,或者自三叠纪以来,大别造山带的古海拔测量在地理上发生了变化。此外,由于通过与古代大气降水的表面反应氧交换,水热蚀变岩石形成矿物的氧同位素同时降低,化石热液系统的寿命在动力学上被量化为小于120万年(Myr)。因此,我们的研究结果表明,大陆造山带的古环境可以从内生档案和$\delta的理论反演中科学和方法地发掘出来^{18}O_W^i$值可以定量地应用于大别造山带以外的地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Palaeo-climate and -topography of the continental orogen: Theoretical inversion with initial oxygen isotopes of ancient meteoric water
ABSTRACT Ancient environments have been mostly reconstructed with exogenous records, yet the potential constraints from endogenous archives were less emphasised. It has been well known that the outer- and inner-spheres of the planetary Earth are naturally linked and/or interplayed each other among geospheres. As stable isotopes of the meteoric water are globally dependent upon precipitating environments, rocks and/or minerals hydrothermally altered by the meteoric water can thus imprint environmental information of continental settings. These valuable clues, however, have been intuitively and/or qualitatively inferred up to now. On the basis of an innovative procedure recently proposed for dealing with thermodynamic re-equilibration of oxygen isotopes between constituent minerals and water from fossil hydrothermal systems, ancient meteoric waters are theoretically inverted from the early Cretaceous post-collisional granitoid and Triassic gneissic country rocks across the Dabie orogen in central-eastern China. The initial oxygen isotopes of ancient meteoric water (i.e., $\delta ^{18}O_W^i$ value hereafter) range from −11.01 ± 0.43 (one standard deviation, 1SD) to −7.61 ± 0.07‰ in this study, yet systematically and/or statistically deviating from modern local precipitation. These imply that either palaeoclimate could be colder than the present at least during the early Cretaceous or palaeoaltimetry has geographically varied across the Dabie orogen since the Triassic. Moreover, the lifetime of fossil hydrothermal systems is kinetically quantified to less than 1.2 million years (Myr) for the concurrent lowering of oxygen isotopes of hydrothermally altered rock-forming minerals through the surface-reaction oxygen exchange with ancient meteoric waters herein. Our results thus suggest that palaeoenvironments of the continental orogen can be scientifically and methodologically unearthed from endogenous archives and theoretical inversion of $\delta ^{18}O_W^i$ values can be quantitatively applied beyond the Dabie orogen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1