Á. González-Jiménez, L. Lomazzi, Rafael Junges, M. Giglio, A. Manes, F. Cadini
{"title":"使用伪损伤增强卷积神经网络方法增强复合材料中基于兰姆波的损伤诊断","authors":"Á. González-Jiménez, L. Lomazzi, Rafael Junges, M. Giglio, A. Manes, F. Cadini","doi":"10.1177/14759217231189972","DOIUrl":null,"url":null,"abstract":"Damage diagnosis of thin-walled structures has been successfully performed through methods based on tomography and machine learning-driven methods. According to traditional approaches, diagnostic signals are excited and sensed on the structure through a permanently installed network of sensors and are processed to obtain information about the damage. Good performance characterizes methods that process Lamb waves, which are described by long propagation distances and high sensitivity to anomalies. Most of the methods require extracting damage-sensitive features from the diagnostic signals to drive the damage diagnosis task. However, this process can lead to loss of information, and the choice of the specific feature to extract may introduce biases that hamper damage diagnosis. Furthermore, traditional approaches do not perform well when composites are considered, due to the anisotropy, inhomogeneity, and complex damage mechanisms shown by this type of material. To boost the performance of methods for damage diagnosis of composite plates, this work proposes a convolutional neural network (CNN)-based algorithm that localizes damage by processing Lamb waves. Different from other methods, the proposed method does not require extracting features from the acquired signals and allows localizing damage through the regression approach. The method was tested against experimental observations of Lamb waves propagating in two composite panels and in a hybrid panel, and the performance of two different sensor arrays was investigated. The pseudo-damage approach was used to generate large enough datasets for training the CNNs, and the performance of the framework was evaluated by localizing pseudo-damage and real damage determined by low-velocity impacts. The CNN-driven method accurately localized damage in all the considered scenarios, and it also outperformed traditional damage indices-based approaches, such as the reconstruction algorithm for probabilistic inspection of defects.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Lamb wave-based damage diagnosis in composite materials using a pseudo-damage boosted convolutional neural network approach\",\"authors\":\"Á. González-Jiménez, L. Lomazzi, Rafael Junges, M. Giglio, A. Manes, F. Cadini\",\"doi\":\"10.1177/14759217231189972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Damage diagnosis of thin-walled structures has been successfully performed through methods based on tomography and machine learning-driven methods. According to traditional approaches, diagnostic signals are excited and sensed on the structure through a permanently installed network of sensors and are processed to obtain information about the damage. Good performance characterizes methods that process Lamb waves, which are described by long propagation distances and high sensitivity to anomalies. Most of the methods require extracting damage-sensitive features from the diagnostic signals to drive the damage diagnosis task. However, this process can lead to loss of information, and the choice of the specific feature to extract may introduce biases that hamper damage diagnosis. Furthermore, traditional approaches do not perform well when composites are considered, due to the anisotropy, inhomogeneity, and complex damage mechanisms shown by this type of material. To boost the performance of methods for damage diagnosis of composite plates, this work proposes a convolutional neural network (CNN)-based algorithm that localizes damage by processing Lamb waves. Different from other methods, the proposed method does not require extracting features from the acquired signals and allows localizing damage through the regression approach. The method was tested against experimental observations of Lamb waves propagating in two composite panels and in a hybrid panel, and the performance of two different sensor arrays was investigated. The pseudo-damage approach was used to generate large enough datasets for training the CNNs, and the performance of the framework was evaluated by localizing pseudo-damage and real damage determined by low-velocity impacts. The CNN-driven method accurately localized damage in all the considered scenarios, and it also outperformed traditional damage indices-based approaches, such as the reconstruction algorithm for probabilistic inspection of defects.\",\"PeriodicalId\":51184,\"journal\":{\"name\":\"Structural Health Monitoring-An International Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Health Monitoring-An International Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14759217231189972\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14759217231189972","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing Lamb wave-based damage diagnosis in composite materials using a pseudo-damage boosted convolutional neural network approach
Damage diagnosis of thin-walled structures has been successfully performed through methods based on tomography and machine learning-driven methods. According to traditional approaches, diagnostic signals are excited and sensed on the structure through a permanently installed network of sensors and are processed to obtain information about the damage. Good performance characterizes methods that process Lamb waves, which are described by long propagation distances and high sensitivity to anomalies. Most of the methods require extracting damage-sensitive features from the diagnostic signals to drive the damage diagnosis task. However, this process can lead to loss of information, and the choice of the specific feature to extract may introduce biases that hamper damage diagnosis. Furthermore, traditional approaches do not perform well when composites are considered, due to the anisotropy, inhomogeneity, and complex damage mechanisms shown by this type of material. To boost the performance of methods for damage diagnosis of composite plates, this work proposes a convolutional neural network (CNN)-based algorithm that localizes damage by processing Lamb waves. Different from other methods, the proposed method does not require extracting features from the acquired signals and allows localizing damage through the regression approach. The method was tested against experimental observations of Lamb waves propagating in two composite panels and in a hybrid panel, and the performance of two different sensor arrays was investigated. The pseudo-damage approach was used to generate large enough datasets for training the CNNs, and the performance of the framework was evaluated by localizing pseudo-damage and real damage determined by low-velocity impacts. The CNN-driven method accurately localized damage in all the considered scenarios, and it also outperformed traditional damage indices-based approaches, such as the reconstruction algorithm for probabilistic inspection of defects.
期刊介绍:
Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.