数字数据中的基础理论:一种反思性程序框架的方法论方法

Q1 Arts and Humanities Journal of Cultural Analytics Pub Date : 2022-12-08 DOI:10.22148/001c.57197
A. Bischof, Konstantin Freybe
{"title":"数字数据中的基础理论:一种反思性程序框架的方法论方法","authors":"A. Bischof, Konstantin Freybe","doi":"10.22148/001c.57197","DOIUrl":null,"url":null,"abstract":"Instead of looking for new paradigms for Digital Humanities (DH), we present Grounded Theory Methodology (GTM) as a methodological approach to frame digital research practices more reflectively. By turning to the epistemological and practical implications of digital tools like Topic Modeling and digital data sources like YouTube comments, we highlight the theoretical assumptions that are already in the game—and call for more explicitness and methodical monitoring. To explain the procedures of GTM and the proposed worth for DH, we present an example of a qualitative research project using machine learning techniques to narrow down a large scale of data to human interpretable resample. The methodically monitored resampling process provided valuable means to validly minimize the amount of data without losing a qualitative trajectory of the process itself. Defining and tracing relevant content in our original data set enabled us to find related comments and textual conversations to be analyzed further. We discuss the example iteration in two ways: Our prototype and procedure show on the one hand, how qualitative research and computational methods can be better intertwined without compromising their epistemological foundations. On the other hand, we argue for an understanding of DH as research practice, that should follow an abductive research agenda in order to ground its theories in data.","PeriodicalId":33005,"journal":{"name":"Journal of Cultural Analytics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grounding Theory in Digital Data: A Methodological Approach for a Reflective Procedural Framework\",\"authors\":\"A. Bischof, Konstantin Freybe\",\"doi\":\"10.22148/001c.57197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instead of looking for new paradigms for Digital Humanities (DH), we present Grounded Theory Methodology (GTM) as a methodological approach to frame digital research practices more reflectively. By turning to the epistemological and practical implications of digital tools like Topic Modeling and digital data sources like YouTube comments, we highlight the theoretical assumptions that are already in the game—and call for more explicitness and methodical monitoring. To explain the procedures of GTM and the proposed worth for DH, we present an example of a qualitative research project using machine learning techniques to narrow down a large scale of data to human interpretable resample. The methodically monitored resampling process provided valuable means to validly minimize the amount of data without losing a qualitative trajectory of the process itself. Defining and tracing relevant content in our original data set enabled us to find related comments and textual conversations to be analyzed further. We discuss the example iteration in two ways: Our prototype and procedure show on the one hand, how qualitative research and computational methods can be better intertwined without compromising their epistemological foundations. On the other hand, we argue for an understanding of DH as research practice, that should follow an abductive research agenda in order to ground its theories in data.\",\"PeriodicalId\":33005,\"journal\":{\"name\":\"Journal of Cultural Analytics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cultural Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22148/001c.57197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cultural Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22148/001c.57197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

我们没有为数字人文(DH)寻找新的范式,而是将基础理论方法论(GTM)作为一种方法论方法,以更具反思性地构建数字研究实践。通过转向主题建模等数字工具和YouTube评论等数字数据源的认识论和实践意义,我们强调了游戏中已经存在的理论假设,并呼吁更加明确和有条理的监控。为了解释GTM的过程和DH的拟议价值,我们提供了一个定性研究项目的例子,该项目使用机器学习技术将大规模数据缩小到人类可解释的重采样。系统监控的重新采样过程提供了有价值的手段,可以有效地减少数据量,而不会丢失过程本身的定性轨迹。在我们的原始数据集中定义和跟踪相关内容使我们能够找到相关的评论和文本对话,以便进一步分析。我们以两种方式讨论示例迭代:我们的原型和程序一方面表明,定性研究和计算方法如何在不损害其认识论基础的情况下更好地交织在一起。另一方面,我们主张将DH理解为一种研究实践,应该遵循溯因研究议程,以便将其理论建立在数据基础上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grounding Theory in Digital Data: A Methodological Approach for a Reflective Procedural Framework
Instead of looking for new paradigms for Digital Humanities (DH), we present Grounded Theory Methodology (GTM) as a methodological approach to frame digital research practices more reflectively. By turning to the epistemological and practical implications of digital tools like Topic Modeling and digital data sources like YouTube comments, we highlight the theoretical assumptions that are already in the game—and call for more explicitness and methodical monitoring. To explain the procedures of GTM and the proposed worth for DH, we present an example of a qualitative research project using machine learning techniques to narrow down a large scale of data to human interpretable resample. The methodically monitored resampling process provided valuable means to validly minimize the amount of data without losing a qualitative trajectory of the process itself. Defining and tracing relevant content in our original data set enabled us to find related comments and textual conversations to be analyzed further. We discuss the example iteration in two ways: Our prototype and procedure show on the one hand, how qualitative research and computational methods can be better intertwined without compromising their epistemological foundations. On the other hand, we argue for an understanding of DH as research practice, that should follow an abductive research agenda in order to ground its theories in data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cultural Analytics
Journal of Cultural Analytics Arts and Humanities-Literature and Literary Theory
CiteScore
2.90
自引率
0.00%
发文量
9
审稿时长
10 weeks
期刊最新文献
Soviet View of the World. Exploring Long-Term Visual Patterns in “Novosti dnia” Newsreel Journal (1945-1992) A Digital Archaeology of Early Hispanic Film Culture: Film Magazines and the Male Fan Reader A Digital Trail of Rupture. The German Film Exile 1933-1945 in the Data of Günter Peter Straschek Approaching a National Film History through Data. Network Analysis in German Film History Digital Film Historiography: Challenges of/and Interdisciplinarity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1