Kelly和Jackson网络,具有可互换的协作服务器

Pub Date : 2021-06-01 DOI:10.1017/apr.2020.63
Chia-Li Wang, R. Wolff
{"title":"Kelly和Jackson网络,具有可互换的协作服务器","authors":"Chia-Li Wang, R. Wolff","doi":"10.1017/apr.2020.63","DOIUrl":null,"url":null,"abstract":"Abstract In open Kelly and Jackson networks, servers are assigned to individual stations, serving customers only where they are assigned. We investigate the performance of modified networks where servers cooperate. A server who would be idle at the assigned station will serve customers at another station, speeding up service there. We assume interchangeable servers: the service rate of a server at a station depends only on the station, not the server. This gives work conservation, which is used in various ways. We investigate three levels of server cooperation, from full cooperation, where all servers are busy when there is work to do anywhere in the network, to one-way cooperation, where a server assigned to one station may assist a server at another, but not the converse. We obtain the same stability conditions for each level and, in a series of examples, obtain substantial performance improvement with server cooperation, even when stations before modification are moderately loaded.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/apr.2020.63","citationCount":"0","resultStr":"{\"title\":\"Kelly and Jackson networks with interchangeable, cooperative servers\",\"authors\":\"Chia-Li Wang, R. Wolff\",\"doi\":\"10.1017/apr.2020.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In open Kelly and Jackson networks, servers are assigned to individual stations, serving customers only where they are assigned. We investigate the performance of modified networks where servers cooperate. A server who would be idle at the assigned station will serve customers at another station, speeding up service there. We assume interchangeable servers: the service rate of a server at a station depends only on the station, not the server. This gives work conservation, which is used in various ways. We investigate three levels of server cooperation, from full cooperation, where all servers are busy when there is work to do anywhere in the network, to one-way cooperation, where a server assigned to one station may assist a server at another, but not the converse. We obtain the same stability conditions for each level and, in a series of examples, obtain substantial performance improvement with server cooperation, even when stations before modification are moderately loaded.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/apr.2020.63\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2020.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2020.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要在开放的Kelly和Jackson网络中,服务器被分配到各个站点,只在分配给客户的地方为他们提供服务。我们研究了服务器协作的修改网络的性能。在指定站点空闲的服务器将在另一个站点为客户提供服务,从而加快那里的服务。我们假设服务器是可互换的:服务器在一个站点的服务速率只取决于站点,而不是服务器。这就产生了工作守恒,它以各种方式使用。我们研究了三个级别的服务器协作,从完全协作到单向协作,在完全协作中,当网络中的任何地方都有工作要做时,所有服务器都很忙,在单向协作中,分配给一个站点的服务器可以帮助另一个站点上的服务器,但不能帮助相反的服务器。我们为每个级别获得了相同的稳定性条件,在一系列示例中,通过服务器协作,即使在修改前的站点负载适中的情况下,我们也获得了显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Kelly and Jackson networks with interchangeable, cooperative servers
Abstract In open Kelly and Jackson networks, servers are assigned to individual stations, serving customers only where they are assigned. We investigate the performance of modified networks where servers cooperate. A server who would be idle at the assigned station will serve customers at another station, speeding up service there. We assume interchangeable servers: the service rate of a server at a station depends only on the station, not the server. This gives work conservation, which is used in various ways. We investigate three levels of server cooperation, from full cooperation, where all servers are busy when there is work to do anywhere in the network, to one-way cooperation, where a server assigned to one station may assist a server at another, but not the converse. We obtain the same stability conditions for each level and, in a series of examples, obtain substantial performance improvement with server cooperation, even when stations before modification are moderately loaded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1