驯化牧草的化学分类学:理解农业起源的途径

IF 4.1 3区 地球科学 Q1 PALEONTOLOGY Journal of Micropalaeontology Pub Date : 2019-06-07 DOI:10.5194/JM-38-83-2019
P. Jardine, W. Gosling, B. Lomax, Adele C. M. Julier, W. Fraser
{"title":"驯化牧草的化学分类学:理解农业起源的途径","authors":"P. Jardine, W. Gosling, B. Lomax, Adele C. M. Julier, W. Fraser","doi":"10.5194/JM-38-83-2019","DOIUrl":null,"url":null,"abstract":"Abstract. The grass family (Poaceae) is one of the most\neconomically important plant groups in the world today. In particular many\nmajor food crops, including rice, wheat, maize, rye, barley, oats and\nmillet, are grasses that were domesticated from wild progenitors during the\nHolocene. Archaeological evidence has provided key information on\ndomestication pathways of different grass lineages through time and space.\nHowever, the most abundant empirical archive of floral change – the pollen\nrecord – has been underused for reconstructing grass domestication\npatterns because of the challenges of classifying grass pollen grains based\non their morphology alone. Here, we test the potential of a novel approach\nfor pollen classification based on the chemical signature of the pollen\ngrains measured using Fourier transform infrared (FTIR) microspectroscopy.\nWe use a dataset of eight domesticated and wild grass species, classified\nusing k-nearest neighbour classification coupled with leave-one-out cross\nvalidation. We demonstrate a 95 % classification success rate on training\ndata and an 82 % classification success rate on validation data. This\nresult shows that FTIR spectroscopy can provide enhanced taxonomic\nresolution enabling species level assignment from pollen. This will enable\nthe full testing of the timing and drivers of domestication and agriculture\nthrough the Holocene.\n","PeriodicalId":54786,"journal":{"name":"Journal of Micropalaeontology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture\",\"authors\":\"P. Jardine, W. Gosling, B. Lomax, Adele C. M. Julier, W. Fraser\",\"doi\":\"10.5194/JM-38-83-2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The grass family (Poaceae) is one of the most\\neconomically important plant groups in the world today. In particular many\\nmajor food crops, including rice, wheat, maize, rye, barley, oats and\\nmillet, are grasses that were domesticated from wild progenitors during the\\nHolocene. Archaeological evidence has provided key information on\\ndomestication pathways of different grass lineages through time and space.\\nHowever, the most abundant empirical archive of floral change – the pollen\\nrecord – has been underused for reconstructing grass domestication\\npatterns because of the challenges of classifying grass pollen grains based\\non their morphology alone. Here, we test the potential of a novel approach\\nfor pollen classification based on the chemical signature of the pollen\\ngrains measured using Fourier transform infrared (FTIR) microspectroscopy.\\nWe use a dataset of eight domesticated and wild grass species, classified\\nusing k-nearest neighbour classification coupled with leave-one-out cross\\nvalidation. We demonstrate a 95 % classification success rate on training\\ndata and an 82 % classification success rate on validation data. This\\nresult shows that FTIR spectroscopy can provide enhanced taxonomic\\nresolution enabling species level assignment from pollen. This will enable\\nthe full testing of the timing and drivers of domestication and agriculture\\nthrough the Holocene.\\n\",\"PeriodicalId\":54786,\"journal\":{\"name\":\"Journal of Micropalaeontology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micropalaeontology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/JM-38-83-2019\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PALEONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micropalaeontology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/JM-38-83-2019","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

摘要禾本科(禾本科)是当今世界经济上最重要的植物类群之一。特别是许多主要的粮食作物,包括水稻、小麦、玉米、黑麦、大麦、燕麦和小米,都是在全新世从野生祖先驯化而来的草。考古证据为不同草系在时间和空间上的形成路径提供了关键信息。然而,由于仅根据草花粉粒的形态对其进行分类的挑战,最丰富的花变化经验档案——花粉记录——在重建草驯化模式方面没有得到充分利用。在这里,我们测试了一种新的花粉分类方法的潜力,该方法基于使用傅立叶变换红外(FTIR)显微光谱法测量的花粉内含物的化学特征。我们使用了一个由八种驯化和野生草种组成的数据集,使用k近邻分类和留一交叉验证进行分类。我们展示了95 % 训练数据分类成功率与an82 % 验证数据的分类成功率。这一结果表明,FTIR光谱可以提供增强的分类分辨率,从而能够从花粉中进行物种级分配。这将有助于对全新世驯化和农业的时间和驱动因素进行全面测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture
Abstract. The grass family (Poaceae) is one of the most economically important plant groups in the world today. In particular many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are grasses that were domesticated from wild progenitors during the Holocene. Archaeological evidence has provided key information on domestication pathways of different grass lineages through time and space. However, the most abundant empirical archive of floral change – the pollen record – has been underused for reconstructing grass domestication patterns because of the challenges of classifying grass pollen grains based on their morphology alone. Here, we test the potential of a novel approach for pollen classification based on the chemical signature of the pollen grains measured using Fourier transform infrared (FTIR) microspectroscopy. We use a dataset of eight domesticated and wild grass species, classified using k-nearest neighbour classification coupled with leave-one-out cross validation. We demonstrate a 95 % classification success rate on training data and an 82 % classification success rate on validation data. This result shows that FTIR spectroscopy can provide enhanced taxonomic resolution enabling species level assignment from pollen. This will enable the full testing of the timing and drivers of domestication and agriculture through the Holocene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micropalaeontology
Journal of Micropalaeontology 生物-古生物学
CiteScore
4.30
自引率
5.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The Journal of Micropalaeontology (JM) is an established international journal covering all aspects of microfossils and their application to both applied studies and basic research. In particular we welcome submissions relating to microfossils and their application to palaeoceanography, palaeoclimatology, palaeobiology, evolution, taxonomy, environmental change and molecular phylogeny.
期刊最新文献
Late Miocene to Early Pliocene benthic foraminifera from the Tasman Sea (Integrated Ocean Drilling Program Site U1506) Palsys.org: an open-access taxonomic and stratigraphic database of organic-walled dinoflagellate cysts Miocene Climatic Optimum fungal record and plant-based CREST climatic reconstruction from southern McMurdo Sound, Antarctica Triassic and Jurassic possible planktonic foraminifera and the assemblages recovered from the Ogrodzieniec Glauconitic Marls Formation (uppermost Callovian and lowermost Oxfordian, Jurassic) of the Polish Basin Dinoflagellate cyst and pollen assemblages as tracers for marine productivity and river input in the northern Gulf of Mexico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1