聚离子液体捕集CO2研究进展

Rajdip Soni, R. Biswas
{"title":"聚离子液体捕集CO2研究进展","authors":"Rajdip Soni, R. Biswas","doi":"10.2174/2405520415666220727150202","DOIUrl":null,"url":null,"abstract":"\n\nOver the last two decades, poly(ionic liquid)s (PILs) have undergone extensive research and development. PILs have opened a whole new passage to versatile ionic polymers. It has compelled the chemical industry to rethink its modern ways of carbon capture. PILs have demonstrated excellent CO2 sorption capacities in comparison to their corresponding ionic liquids (ILs). The effects of the chemical structures of PILs on CO2 sorption, including the types of anion, cation, and backbone, have been discussed. This review aims to cover details of a large range of PILs along with their physical and structural properties, synthesis procedures, and the absorption power towards CO2. Imidazolium-based PILs are some of the strongest absorbents of CO2. On the other hand, PILs with amino acid (AA) anion seem to have a much-improved sorption capacity when compared PILs with the non-AA anionic part. PILs with hexafluorophosphate ion (PF6-) relatively absorb more CO2 compared to tetra-fluoroborate (BF4-) based PILs. The solubility of CO¬2 was increased with increasing pressure and decreased as temperature increased. The inclusion of hydroxyl groups in the polycation increased the interaction with CO2 molecules.¬ The COSMO-RS model was used to understand the molecular-level behavior of PILs in terms of their activity coefficients.\n","PeriodicalId":38021,"journal":{"name":"Recent Innovations in Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Review of CO2 capture by Poly(Ionic liquid)s\",\"authors\":\"Rajdip Soni, R. Biswas\",\"doi\":\"10.2174/2405520415666220727150202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nOver the last two decades, poly(ionic liquid)s (PILs) have undergone extensive research and development. PILs have opened a whole new passage to versatile ionic polymers. It has compelled the chemical industry to rethink its modern ways of carbon capture. PILs have demonstrated excellent CO2 sorption capacities in comparison to their corresponding ionic liquids (ILs). The effects of the chemical structures of PILs on CO2 sorption, including the types of anion, cation, and backbone, have been discussed. This review aims to cover details of a large range of PILs along with their physical and structural properties, synthesis procedures, and the absorption power towards CO2. Imidazolium-based PILs are some of the strongest absorbents of CO2. On the other hand, PILs with amino acid (AA) anion seem to have a much-improved sorption capacity when compared PILs with the non-AA anionic part. PILs with hexafluorophosphate ion (PF6-) relatively absorb more CO2 compared to tetra-fluoroborate (BF4-) based PILs. The solubility of CO¬2 was increased with increasing pressure and decreased as temperature increased. The inclusion of hydroxyl groups in the polycation increased the interaction with CO2 molecules.¬ The COSMO-RS model was used to understand the molecular-level behavior of PILs in terms of their activity coefficients.\\n\",\"PeriodicalId\":38021,\"journal\":{\"name\":\"Recent Innovations in Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Innovations in Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2405520415666220727150202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Innovations in Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2405520415666220727150202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

摘要

在过去的二十年里,聚离子液体(PIL)经过了广泛的研究和开发。PIL为多功能离子聚合物开辟了一条全新的道路。它迫使化学工业重新思考其碳捕获的现代方式。与相应的离子液体(ILs)相比,PIL表现出优异的CO2吸附能力。讨论了PILs的化学结构对CO2吸附的影响,包括阴离子、阳离子和骨架的类型。这篇综述旨在涵盖大量PIL的细节,以及它们的物理和结构特性、合成程序和对CO2的吸收能力。咪唑基PIL是一些对二氧化碳吸收能力最强的物质。另一方面,与非AA阴离子部分的PIL相比,具有氨基酸(AA)阴离子的PIL似乎具有显著提高的吸附能力。与基于四氟硼酸盐(BF4-)的PIL相比,具有六氟磷酸离子(PF6-)的PILs相对吸收更多的CO2。CO2的溶解度随压力的增加而增加,随温度的升高而降低。聚阳离子中包含的羟基增加了与CO2分子的相互作用。COSMO-RS模型用于根据活性系数了解PIL的分子水平行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review of CO2 capture by Poly(Ionic liquid)s
Over the last two decades, poly(ionic liquid)s (PILs) have undergone extensive research and development. PILs have opened a whole new passage to versatile ionic polymers. It has compelled the chemical industry to rethink its modern ways of carbon capture. PILs have demonstrated excellent CO2 sorption capacities in comparison to their corresponding ionic liquids (ILs). The effects of the chemical structures of PILs on CO2 sorption, including the types of anion, cation, and backbone, have been discussed. This review aims to cover details of a large range of PILs along with their physical and structural properties, synthesis procedures, and the absorption power towards CO2. Imidazolium-based PILs are some of the strongest absorbents of CO2. On the other hand, PILs with amino acid (AA) anion seem to have a much-improved sorption capacity when compared PILs with the non-AA anionic part. PILs with hexafluorophosphate ion (PF6-) relatively absorb more CO2 compared to tetra-fluoroborate (BF4-) based PILs. The solubility of CO¬2 was increased with increasing pressure and decreased as temperature increased. The inclusion of hydroxyl groups in the polycation increased the interaction with CO2 molecules.¬ The COSMO-RS model was used to understand the molecular-level behavior of PILs in terms of their activity coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Recent Innovations in Chemical Engineering
Recent Innovations in Chemical Engineering Chemical Engineering-Chemical Engineering (all)
CiteScore
2.10
自引率
0.00%
发文量
20
期刊最新文献
Preparation and properties of biocomposite prepared from waste polystyrene and Prospopis africana biochar Technologies for Treatment of Landfill Leachate: A Brief Review Ionıc Conductıvıty, Dıelectrıc, And Structural Insıghts Of Deep Eutectıc Solvent-Based Polymer Electrolyte: A Revıew Comparative Study of Manufacturing Process Differentiation of Volatile Components in Kenya Purple Tea Variety TRFK 306/1 Unravelling the Supercapacitive Potential of Zn-Ni-Co Mixed Transition Metal Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1