Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li
{"title":"川南长宁—昭通页岩气田小地震密集阵的局地震级测定","authors":"Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li","doi":"10.26464/epp2021026","DOIUrl":null,"url":null,"abstract":"<p>With the development of unconventional shale gas in the southern Sichuan Basin, seismicity in the region has increased significantly in recent years. Though the existing sparse regional seismic stations can capture most earthquakes with , a great number of smaller earthquakes are often omitted due to limited detection capacity. With the advent of portable seismic nodes, many dense arrays for monitoring seismicity in the unconventional oil and gas fields have been deployed, and the magnitudes of those earthquakes are key to understand the local fault reactivation and seismic potentials. However, the current national standard for determining the local magnitudes was not specifically designed for monitoring stations in close proximity, utilizing a calibration function with a minimal resolution of 5 km in the epicentral distance. That is, the current national standard tends to overestimate the local magnitudes for stations within short epicentral distances, and can result in discrepancies for dense arrays. In this study, we propose a new local magnitude formula which corrects the overestimated magnitudes for shorter distances, yielding accurate event magnitudes for small earthquakes in the Changning−Zhaotong shale gas field in the southern Sichuan Basin, monitored by dense seismic arrays in close proximity. The formula is used to determine the local magnitudes of 7,500 events monitored by a two-phased dense array with several hundred 5 Hz 3C nodes deployed from the end of February 2019 to early May 2019 in the Changning−Zhaotong shale gas field. The magnitude of completeness () using the dense array is −0.1, compared to 1.1 by the sparser Chinese Seismic Network (CSN). In addition, using a machine learning detection and picking procedure, we successfully identify and process some 14,000 earthquakes from the continuous waveforms, a ten-fold increase over the catalog recorded by CSN for the same period, and the is further reduced to −0.3 from −0.1 compared to the catalog obtained via manual processing using the same dense array. The proposed local magnitude formula can be adopted for calculating accurate local magnitudes of future earthquakes using dense arrays in the shale gas fields of the Sichuan Basin. This will help to better characterize the local seismic risks and potentials.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"5 6","pages":"532-546"},"PeriodicalIF":2.9000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.26464/epp2021026","citationCount":"5","resultStr":"{\"title\":\"Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning–Zhaotong Shale Gas Field, Southern Sichuan Basin\",\"authors\":\"Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li\",\"doi\":\"10.26464/epp2021026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the development of unconventional shale gas in the southern Sichuan Basin, seismicity in the region has increased significantly in recent years. Though the existing sparse regional seismic stations can capture most earthquakes with , a great number of smaller earthquakes are often omitted due to limited detection capacity. With the advent of portable seismic nodes, many dense arrays for monitoring seismicity in the unconventional oil and gas fields have been deployed, and the magnitudes of those earthquakes are key to understand the local fault reactivation and seismic potentials. However, the current national standard for determining the local magnitudes was not specifically designed for monitoring stations in close proximity, utilizing a calibration function with a minimal resolution of 5 km in the epicentral distance. That is, the current national standard tends to overestimate the local magnitudes for stations within short epicentral distances, and can result in discrepancies for dense arrays. In this study, we propose a new local magnitude formula which corrects the overestimated magnitudes for shorter distances, yielding accurate event magnitudes for small earthquakes in the Changning−Zhaotong shale gas field in the southern Sichuan Basin, monitored by dense seismic arrays in close proximity. The formula is used to determine the local magnitudes of 7,500 events monitored by a two-phased dense array with several hundred 5 Hz 3C nodes deployed from the end of February 2019 to early May 2019 in the Changning−Zhaotong shale gas field. The magnitude of completeness () using the dense array is −0.1, compared to 1.1 by the sparser Chinese Seismic Network (CSN). In addition, using a machine learning detection and picking procedure, we successfully identify and process some 14,000 earthquakes from the continuous waveforms, a ten-fold increase over the catalog recorded by CSN for the same period, and the is further reduced to −0.3 from −0.1 compared to the catalog obtained via manual processing using the same dense array. The proposed local magnitude formula can be adopted for calculating accurate local magnitudes of future earthquakes using dense arrays in the shale gas fields of the Sichuan Basin. This will help to better characterize the local seismic risks and potentials.</p>\",\"PeriodicalId\":45246,\"journal\":{\"name\":\"Earth and Planetary Physics\",\"volume\":\"5 6\",\"pages\":\"532-546\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.26464/epp2021026\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.26464/epp2021026\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.26464/epp2021026","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning–Zhaotong Shale Gas Field, Southern Sichuan Basin
With the development of unconventional shale gas in the southern Sichuan Basin, seismicity in the region has increased significantly in recent years. Though the existing sparse regional seismic stations can capture most earthquakes with , a great number of smaller earthquakes are often omitted due to limited detection capacity. With the advent of portable seismic nodes, many dense arrays for monitoring seismicity in the unconventional oil and gas fields have been deployed, and the magnitudes of those earthquakes are key to understand the local fault reactivation and seismic potentials. However, the current national standard for determining the local magnitudes was not specifically designed for monitoring stations in close proximity, utilizing a calibration function with a minimal resolution of 5 km in the epicentral distance. That is, the current national standard tends to overestimate the local magnitudes for stations within short epicentral distances, and can result in discrepancies for dense arrays. In this study, we propose a new local magnitude formula which corrects the overestimated magnitudes for shorter distances, yielding accurate event magnitudes for small earthquakes in the Changning−Zhaotong shale gas field in the southern Sichuan Basin, monitored by dense seismic arrays in close proximity. The formula is used to determine the local magnitudes of 7,500 events monitored by a two-phased dense array with several hundred 5 Hz 3C nodes deployed from the end of February 2019 to early May 2019 in the Changning−Zhaotong shale gas field. The magnitude of completeness () using the dense array is −0.1, compared to 1.1 by the sparser Chinese Seismic Network (CSN). In addition, using a machine learning detection and picking procedure, we successfully identify and process some 14,000 earthquakes from the continuous waveforms, a ten-fold increase over the catalog recorded by CSN for the same period, and the is further reduced to −0.3 from −0.1 compared to the catalog obtained via manual processing using the same dense array. The proposed local magnitude formula can be adopted for calculating accurate local magnitudes of future earthquakes using dense arrays in the shale gas fields of the Sichuan Basin. This will help to better characterize the local seismic risks and potentials.